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Goals for this Session
• Why create a workflow?
• Describe workflows as directed acyclic graphs

(DAGs)
• Workflow execution via DAGMan (DAG Manager)
• Stopping, resuming, troubleshooting
• Node-level options in a DAG
• Modular organization of DAG components
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Automation!

• Objective: Submit jobs 
in a particular order, 
automatically.

• Especially if: Need to 
replicate the same 
workflow multiple times 
in the future.

1 2 3 N...

split

combine
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DAG = ”directed acyclic graph”

• topological ordering of 
vertices (“nodes”) is 
established by directional 
connections (“edges”)

• “acyclic” aspect requires a 
start and end, with no looped 
repetition
- can contain cyclic 

subcomponents, covered in 
later slides for DAG workflows

wikipedia.org/wiki/Directed_acyclic_graph

Wikimedia Commons
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DESCRIBING WORKFLOWS 
WITH DAGMAN
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DAGMan in the HTCondor Manual

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html 6

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html
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An Example HTC Workflow

• User must 
communicate the 
“nodes” and directional 
“edges” of the DAG 1 2 3 N...

split

combine
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Simple Example for this Tutorial

• The DAG input file 
will communicate the 
“nodes” and directional 
“edges” of the DAG ...B1 B2 B3 BN

A

C
8



OSG User School 2022

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

• Node names will be used by 
various DAG features to modify 
their execution by DAGMan.

Basic DAG input file: 
JOB nodes, PARENT-CHILD edges 

...B1 B2 B3 BN

A

C
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Basic DAG input file: 
JOB nodes, PARENT-CHILD edges 

• Node names and filenames are your choice.
• Node name and submit filename do not have to match.

(dag_dir)/
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag
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Endless Workflow Possibilities

Wikimedia Commons

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator 11
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DAGs are also useful for non-
sequential work

‘bag’ of HTC jobs disjointed workflows

...B1 B2 B3 BN
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JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

Basic DAG input file: 
JOB nodes, PARENT-CHILD edges 

...B1 B2 B3 BN

A

C
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SUBMITTING AND 
MONITORING A DAGMAN
WORKFLOW
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Submitting a DAG to the queue 
• Submission command:

condor_submit_dag dag_file

$ condor_submit_dag my.dag

------------------------------------------------------------------
File for submitting this DAG to HTCondor : mydag.dag.condor.sub
Log of DAGMan debugging messages : mydag.dag.dagman.out
Log of HTCondor library output : mydag.dag.lib.out
Log of HTCondor library error messages : mydag.dag.lib.err
Log of the life of condor_dagman itself : mydag.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 128.
------------------------------------------------------------------
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A submitted DAG creates a 
DAGMan job in the queue

• DAGMan runs on the access point, as a job in the 
queue

• At first:
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL  JOB_IDS
alice  my.dag+128 4/30 18:08 _ _ _ _ 0.0 
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:06 R 0 0.3 condor_dagman
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended
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Jobs are automatically submitted by 
the DAGMan job

• Seconds later, node A is submitted:
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
OWNER BATCH_NAME SUBMITTED  DONE RUN IDLE TOTAL JOB_IDS
alice  my.dag+128 4/30 18:08 _ _ 1 5 129.0 
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:36 R 0 0.3 condor_dagman
129.0 alice 4/30 18:08 0+00:00:00 I 0 0.3 A_split.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended
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Jobs are automatically submitted by 
the DAGMan job

• After A completes, B1-3 are submitted
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL  JOB_IDS
alice  my.dag+128 4/30 18:08 1 _ 3 5 130.0...132.0 
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman
130.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
131.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
132.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended
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Jobs are automatically submitted by 
the DAGMan job

• After B1-3 complete, node C is submitted
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
OWNER BATCH_NAME   SUBMITTED DONE RUN IDLE TOTAL  JOB_IDS
alice  my.dag+128 4/30 18:08 4 _ 1 5 133.0 
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:46:36 R 0 0.3 condor_dagman
133.0 alice 4/30 18:54 0+00:00:00 I 0 0.3 C_combine.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended
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Status files are created at the time of 
DAG submission

A.sub B1.sub B2.sub
B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.nodes.log

(dag_dir)/

*.condor.sub and *.dagman.log describe the queued DAGMan
job process, as for any other jobs

*.dagman.out has DAGMan-specific logging (look to first for errors)
*.lib.err/out contain std err/out for the DAGMan job process
*.nodes.log is a combined log of all jobs within the DAG

20



OSG User School 2022

DAG Completion

*.dagman.metrics is a summary of events and outcomes
*.dagman.log will note the completion of the DAGMan job
*.dagman.out has detailed logging (look to first for errors)

A.sub B1.sub B2.sub
B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.nodes.log my.dag.dagman.metrics

(dag_dir)/
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STOPPING, RESTARTING, AND 
TROUBLESHOOTING
,
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Removing a DAG from the queue
• Remove the DAGMan job in order to stop and remove the entire 

DAG:
condor_rm dagman_jobID

• Creates a rescue file so that only incomplete or unsuccessful 
NODES are repeated upon resubmission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
OWNER BATCH_NAME   SUBMITTED DONE  RUN IDLE TOTAL  JOB_IDS
alice   my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0 
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_rm 128
All jobs in cluster 128 have been marked for removal
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Removal of a DAG creates a rescue file

• Named dag_file.rescue001
§ increments if more rescue DAG files are created

• Records which NODES have completed successfully
§ does not contain the actual DAG structure

A.sub B1.sub  B2.sub  B3.sub  C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.metrics my.dag.nodes.log my.dag.rescue001

(dag_dir)/
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Rescue Files 
For Resuming a Failed DAG 

• A rescue file is created when:
- a node fails, and after DAGMan advances through 

any other possible nodes
- the DAG is removed from the queue 

(or aborted, see manual)
- the DAG is halted and not unhalted 

(see manual)
• Resubmission uses the rescue file (if it exists) 

when the original DAG file is resubmitted
- override: condor_submit_dag dag_file -f
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...B1 B2 B3 BN

A

C

Node Failures 
Result in DAG Failure

• If a node JOB fails (non-
zero exit code)
- DAGMan continues to run 

other JOB nodes until it can 
no longer make progress

• Example at right:
- B2 fails
- Other B* jobs continue
- DAG fails and exits after B*

and before node C
26
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Best Workflow Control Achieved with 
One Process per JOB Node

• While submit files can ‘queue’ 
many processes, a single job
process per submit file is 
usually best for DAG JOBs
- Failure of any queued process in 

a JOB node results in failure of 
the entire node and immediate 
removal of all other processes in 
the node.

- RETRY of a JOB node retries 
the entire submit file.

...B1 B2 B3 BN

A

C
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Resolving held node jobs

• Look at the hold reason (in the job log, or with 
‘condor_q -hold’)

• Fix the issue and release the jobs (condor_release) 
-OR- remove the entire DAG, resolve, then resubmit 
the DAG (remember the automatic rescue DAG file!)

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?... 
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman
130.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
131.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
132.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
4 jobs; 0 completed, 0 removed, 0 idle, 1 running, 3 held, 0 suspended
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BEYOND THE BASIC DAG:
NODE-LEVEL MODIFIERS
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Default File Organization

• What if you want to organize files 
into other directories?

(dag_dir)/
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag
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Node-specific File Organization with 
DIR

• DIR sets the submission directory of the node

(dag_dir)/
my.dag
A/ A.sub (A job files)
B/ B1.sub  B2.sub

B3.sub  (B job files)
C/ C.sub (C job files) 

JOB A A.sub DIR A
JOB B1 B1.sub DIR B
JOB B2 B2.sub DIR B
JOB B3 B3.sub DIR B
JOB C C.sub DIR C
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag
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PRE and POST scripts run on the 
access point, as part of the node

• Use sparingly for lightweight work; 
otherwise include work in node jobs

JOB A A.sub
SCRIPT POST A sort.sh
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
SCRIPT PRE C tar_it.sh
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag
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RETRY failed nodes to overcome 
transient errors

• Retry a node up to N times if the exit code is non-zero:
RETRY node_name N

• Note: Unnecessary for nodes (jobs) that can use max_retries
in the submit file

• See also: retry except for a particular exit code (UNLESS-
EXIT), or retry scripts (DEFER)

JOB A A.sub
RETRY A 5 
JOB B B.sub
PARENT A CHILD B

Example:
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RETRY applies to whole node, 
including PRE/POST scripts

• PRE and POST scripts are included in retries
• RETRY of a node with a POST script uses the exit code from 

the POST script (not from the job)
- POST script can do more to determine node success, perhaps by 

examining JOB output

• Achieve repetitive iterations!
JOB A A.sub
SCRIPT POST A checkA.sh
RETRY A 5

Example:
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MODULAR ORGANIZATION OF 
DAG COMPONENTS
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Submit File Templates via VARS
• VARS line defines node-specific values that are passed into 

submit file variables
VARS node_name var1=“value” [var2=“value”]

• Allows a single submit file shared by all B jobs, rather than one 
submit file for each JOB.

B.sub
…
InitialDir = $(data)
arguments = $(data).csv $(opt)
…
queue

JOB B1 B.sub
VARS B1 data=”B1” opt=“10” 
JOB B2 B.sub
VARS B2 data=“B2” opt=“12”
JOB B3 B.sub
VARS B3 data=“B3” opt=“14”

my.dag
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SPLICE subsets of a DAG to simplify 
lengthy DAG files

JOB A A.sub
SPLICE B B.spl
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub

B.spl
...B1 B2 B3 BN

A

C
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Use nested SPLICEs with DIR to 
achieve templating

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2
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my.dag
A/ A.sub (A job files)
B/ B.spl inner.spl

1.sub   2.sub
B1/ (1-2 job files)
B2/ (1-2 job files)
…
BN/ (1-2 job files)

C/ C.sub (C job files)

(dag_dir)/

Use nested SPLICEs with DIR to 
achieve templating

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2
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Repeating DAG Components!!

https://confluence.pegasus.isi.edu/display/pegasus/LIGO+IHOPE 40
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What if some DAG components can’t be 
known at submit time?

If N can only 
be determined 
as part of the 
work of A …

...B1 B2 B3 BN

A

C
41



OSG User School 2022

A SUBDAG within a DAG
my.dag

B.dag (written by A)
...B1 B2 B3 BN

A

C

JOB A A.sub
SUBDAG EXTERNAL B B.dag
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub
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Use a SUBDAG to achieve a Cyclic 
Component within a DAG

JOB A A.sub
SUBDAG EXTERNAL B B.dag
SCRIPT POST B iterateB.sh
RETRY B 1000
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

• POST script determines whether another 
iteration is necessary; if so, exits non-zero

• RETRY applies to entire SUBDAG, which may 
include multiple, sequential nodes

B

A

C

POST	script
RETRY
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https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html
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DAGMan Exercises!
• Essential: Exercises 1-4
• Ask questions! ‘See you in Slack!
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