
Workflows with HTCondor’s
DAGMan

Thursday, July 28
Lauren Michael, lmichael@wisc.edu

OSG User School 2022

Goals for this Session
• Why create a workflow?
• Describe workflows as directed acyclic graphs

(DAGs)
• Workflow execution via DAGMan (DAG Manager)
• Stopping, resuming, troubleshooting
• Node-level options in a DAG
• Modular organization of DAG components

2

OSG User School 2022

Automation!

• Objective: Submit jobs
in a particular order,
automatically.

• Especially if: Need to
replicate the same
workflow multiple times
in the future.

1 2 3 N...

split

combine
3

OSG User School 2022

DAG = ”directed acyclic graph”

• topological ordering of
vertices (“nodes”) is
established by directional
connections (“edges”)

• “acyclic” aspect requires a
start and end, with no looped
repetition
- can contain cyclic

subcomponents, covered in
later slides for DAG workflows

wikipedia.org/wiki/Directed_acyclic_graph

Wikimedia Commons

4

https://en.wikipedia.org/wiki/Directed_acyclic_graph

OSG User School 2022

DESCRIBING WORKFLOWS
WITH DAGMAN

5

OSG User School 2022

DAGMan in the HTCondor Manual

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html 6

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html

OSG User School 2022

An Example HTC Workflow

• User must
communicate the
“nodes” and directional
“edges” of the DAG 1 2 3 N...

split

combine
7

OSG User School 2022

Simple Example for this Tutorial

• The DAG input file
will communicate the
“nodes” and directional
“edges” of the DAG ...B1 B2 B3 BN

A

C
8

OSG User School 2022

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

• Node names will be used by
various DAG features to modify
their execution by DAGMan.

Basic DAG input file:
JOB nodes, PARENT-CHILD edges

...B1 B2 B3 BN

A

C
9

OSG User School 2022

Basic DAG input file:
JOB nodes, PARENT-CHILD edges

• Node names and filenames are your choice.
• Node name and submit filename do not have to match.

(dag_dir)/
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

10

OSG User School 2022

Endless Workflow Possibilities

Wikimedia Commons

https://confluence.pegasus.isi.edu/display/pegasus/WorkflowGenerator 11

OSG User School 2022

DAGs are also useful for non-
sequential work

‘bag’ of HTC jobs disjointed workflows

...B1 B2 B3 BN

12

OSG User School 2022

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

Basic DAG input file:
JOB nodes, PARENT-CHILD edges

...B1 B2 B3 BN

A

C
13

OSG User School 2022

SUBMITTING AND
MONITORING A DAGMAN
WORKFLOW

14

OSG User School 2022

Submitting a DAG to the queue
• Submission command:

condor_submit_dag dag_file

$ condor_submit_dag my.dag

--
File for submitting this DAG to HTCondor : mydag.dag.condor.sub
Log of DAGMan debugging messages : mydag.dag.dagman.out
Log of HTCondor library output : mydag.dag.lib.out
Log of HTCondor library error messages : mydag.dag.lib.err
Log of the life of condor_dagman itself : mydag.dag.dagman.log

Submitting job(s).
1 job(s) submitted to cluster 128.
--

15

OSG User School 2022

A submitted DAG creates a
DAGMan job in the queue

• DAGMan runs on the access point, as a job in the
queue

• At first:
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 18:08 _ _ _ _ 0.0
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:06 R 0 0.3 condor_dagman
1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

16

OSG User School 2022

Jobs are automatically submitted by
the DAGMan job

• Seconds later, node A is submitted:
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 18:08 _ _ 1 5 129.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:00:36 R 0 0.3 condor_dagman
129.0 alice 4/30 18:08 0+00:00:00 I 0 0.3 A_split.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

17

OSG User School 2022

Jobs are automatically submitted by
the DAGMan job

• After A completes, B1-3 are submitted
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 18:08 1 _ 3 5 130.0...132.0
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman
130.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
131.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
132.0 alice 4/30 18:18 0+00:00:00 I 0 0.3 B_run.sh
4 jobs; 0 completed, 0 removed, 3 idle, 1 running, 0 held, 0 suspended

18

OSG User School 2022

Jobs are automatically submitted by
the DAGMan job

• After B1-3 complete, node C is submitted
$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 18:08 4 _ 1 5 133.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:46:36 R 0 0.3 condor_dagman
133.0 alice 4/30 18:54 0+00:00:00 I 0 0.3 C_combine.sh
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

19

OSG User School 2022

Status files are created at the time of
DAG submission

A.sub B1.sub B2.sub
B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.nodes.log

(dag_dir)/

*.condor.sub and *.dagman.log describe the queued DAGMan
job process, as for any other jobs

*.dagman.out has DAGMan-specific logging (look to first for errors)
*.lib.err/out contain std err/out for the DAGMan job process
*.nodes.log is a combined log of all jobs within the DAG

20

OSG User School 2022

DAG Completion

*.dagman.metrics is a summary of events and outcomes
*.dagman.log will note the completion of the DAGMan job
*.dagman.out has detailed logging (look to first for errors)

A.sub B1.sub B2.sub
B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.nodes.log my.dag.dagman.metrics

(dag_dir)/

21

OSG User School 2022

STOPPING, RESTARTING, AND
TROUBLESHOOTING
,

22

OSG User School 2022

Removing a DAG from the queue
• Remove the DAGMan job in order to stop and remove the entire

DAG:
condor_rm dagman_jobID

• Creates a rescue file so that only incomplete or unsuccessful
NODES are repeated upon resubmission

$ condor_q
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice my.dag+128 4/30 8:08 4 _ 1 6 129.0...133.0
2 jobs; 0 completed, 0 removed, 1 idle, 1 running, 0 held, 0 suspended

$ condor_rm 128
All jobs in cluster 128 have been marked for removal

23

OSG User School 2022

Removal of a DAG creates a rescue file

• Named dag_file.rescue001
§ increments if more rescue DAG files are created

• Records which NODES have completed successfully
§ does not contain the actual DAG structure

A.sub B1.sub B2.sub B3.sub C.sub (other job files)
my.dag my.dag.condor.sub my.dag.dagman.log
my.dag.dagman.out my.dag.lib.err my.dag.lib.out
my.dag.metrics my.dag.nodes.log my.dag.rescue001

(dag_dir)/

24

OSG User School 2022

Rescue Files
For Resuming a Failed DAG

• A rescue file is created when:
- a node fails, and after DAGMan advances through

any other possible nodes
- the DAG is removed from the queue

(or aborted, see manual)
- the DAG is halted and not unhalted

(see manual)
• Resubmission uses the rescue file (if it exists)

when the original DAG file is resubmitted
- override: condor_submit_dag dag_file -f

25

OSG User School 2022

...B1 B2 B3 BN

A

C

Node Failures
Result in DAG Failure

• If a node JOB fails (non-
zero exit code)
- DAGMan continues to run

other JOB nodes until it can
no longer make progress

• Example at right:
- B2 fails
- Other B* jobs continue
- DAG fails and exits after B*

and before node C
26

OSG User School 2022

Best Workflow Control Achieved with
One Process per JOB Node

• While submit files can ‘queue’
many processes, a single job
process per submit file is
usually best for DAG JOBs
- Failure of any queued process in

a JOB node results in failure of
the entire node and immediate
removal of all other processes in
the node.

- RETRY of a JOB node retries
the entire submit file.

...B1 B2 B3 BN

A

C
27

OSG User School 2022

Resolving held node jobs

• Look at the hold reason (in the job log, or with
‘condor_q -hold’)

• Fix the issue and release the jobs (condor_release)
-OR- remove the entire DAG, resolve, then resubmit
the DAG (remember the automatic rescue DAG file!)

$ condor_q -nobatch
-- Schedd: submit-3.chtc.wisc.edu : <128.104.100.44:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 4/30 18:08 0+00:20:36 R 0 0.3 condor_dagman
130.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
131.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
132.0 alice 4/30 18:18 0+00:00:00 H 0 0.3 B_run.sh
4 jobs; 0 completed, 0 removed, 0 idle, 1 running, 3 held, 0 suspended

28

OSG User School 2022

BEYOND THE BASIC DAG:
NODE-LEVEL MODIFIERS

29

OSG User School 2022

Default File Organization

• What if you want to organize files
into other directories?

(dag_dir)/
A.sub B1.sub
B2.sub B3.sub
C.sub my.dag
(other job files)

JOB A A.sub
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

30

OSG User School 2022

Node-specific File Organization with
DIR

• DIR sets the submission directory of the node

(dag_dir)/
my.dag
A/ A.sub (A job files)
B/ B1.sub B2.sub

B3.sub (B job files)
C/ C.sub (C job files)

JOB A A.sub DIR A
JOB B1 B1.sub DIR B
JOB B2 B2.sub DIR B
JOB B3 B3.sub DIR B
JOB C C.sub DIR C
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

31

OSG User School 2022

PRE and POST scripts run on the
access point, as part of the node

• Use sparingly for lightweight work;
otherwise include work in node jobs

JOB A A.sub
SCRIPT POST A sort.sh
JOB B1 B1.sub
JOB B2 B2.sub
JOB B3 B3.sub
JOB C C.sub
SCRIPT PRE C tar_it.sh
PARENT A CHILD B1 B2 B3
PARENT B1 B2 B3 CHILD C

my.dag

32

OSG User School 2022

RETRY failed nodes to overcome
transient errors

• Retry a node up to N times if the exit code is non-zero:
RETRY node_name N

• Note: Unnecessary for nodes (jobs) that can use max_retries
in the submit file

• See also: retry except for a particular exit code (UNLESS-
EXIT), or retry scripts (DEFER)

JOB A A.sub
RETRY A 5
JOB B B.sub
PARENT A CHILD B

Example:

33

OSG User School 2022

RETRY applies to whole node,
including PRE/POST scripts

• PRE and POST scripts are included in retries
• RETRY of a node with a POST script uses the exit code from

the POST script (not from the job)
- POST script can do more to determine node success, perhaps by

examining JOB output

• Achieve repetitive iterations!
JOB A A.sub
SCRIPT POST A checkA.sh
RETRY A 5

Example:

34

OSG User School 2022

MODULAR ORGANIZATION OF
DAG COMPONENTS

35

OSG User School 2022

Submit File Templates via VARS
• VARS line defines node-specific values that are passed into

submit file variables
VARS node_name var1=“value” [var2=“value”]

• Allows a single submit file shared by all B jobs, rather than one
submit file for each JOB.

B.sub
…
InitialDir = $(data)
arguments = $(data).csv $(opt)
…
queue

JOB B1 B.sub
VARS B1 data=”B1” opt=“10”
JOB B2 B.sub
VARS B2 data=“B2” opt=“12”
JOB B3 B.sub
VARS B3 data=“B3” opt=“14”

my.dag

36

OSG User School 2022

SPLICE subsets of a DAG to simplify
lengthy DAG files

JOB A A.sub
SPLICE B B.spl
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub

B.spl
...B1 B2 B3 BN

A

C
37

OSG User School 2022

Use nested SPLICEs with DIR to
achieve templating

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2

OSG User School 2022

my.dag
A/ A.sub (A job files)
B/ B.spl inner.spl

1.sub 2.sub
B1/ (1-2 job files)
B2/ (1-2 job files)
…
BN/ (1-2 job files)

C/ C.sub (C job files)

(dag_dir)/

Use nested SPLICEs with DIR to
achieve templating

my.dag

B.spl

JOB A A.sub DIR A
SPLICE B B.spl DIR B
JOB C C.sub DIR C
PARENT A CHILD B
PARENT B CHILD C

SPLICE B1 ../inner.spl DIR B1
SPLICE B2 ../inner.spl DIR B2
…
SPLICE BN ../inner.spl DIR BN

inner.spl
JOB 1 ../1.sub
JOB 2 ../2.sub
PARENT 1 CHILD 2

OSG User School 2022

Repeating DAG Components!!

https://confluence.pegasus.isi.edu/display/pegasus/LIGO+IHOPE 40

OSG User School 2022

What if some DAG components can’t be
known at submit time?

If N can only
be determined
as part of the
work of A …

...B1 B2 B3 BN

A

C
41

OSG User School 2022

A SUBDAG within a DAG
my.dag

B.dag (written by A)
...B1 B2 B3 BN

A

C

JOB A A.sub
SUBDAG EXTERNAL B B.dag
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

JOB B1 B1.sub
JOB B2 B2.sub
…
JOB BN BN.sub

42

OSG User School 2022

Use a SUBDAG to achieve a Cyclic
Component within a DAG

JOB A A.sub
SUBDAG EXTERNAL B B.dag
SCRIPT POST B iterateB.sh
RETRY B 1000
JOB C C.sub
PARENT A CHILD B
PARENT B CHILD C

my.dag

• POST script determines whether another
iteration is necessary; if so, exits non-zero

• RETRY applies to entire SUBDAG, which may
include multiple, sequential nodes

B

A

C

POST	script
RETRY

43

More in the HTCondor Manual!!!

https://htcondor.readthedocs.io/en/latest/users-manual/dagman-workflows.html

OSG User School 2022

DAGMan Exercises!
• Essential: Exercises 1-4
• Ask questions! ‘See you in Slack!

45

