Simulating the spread of flying insects using HTC

Matthew Garcia, Ph.D.

Postdoctoral Research Associate Dept. of Forest & Wildlife Ecology University of Wisconsin–Madison matt.e.garcia@gmail.com

Principal Collaborators:

Brian R. Sturtevant, U.S. Forest Service Jacques Régnière, Canadian Forest Service Rémi Saint-Amant, Canadian Forest Service Yan Boulanger, Canadian Forest Service Philip A. Townsend, UW–Madison F&WE

Natural Resources Canada Canadian Forest Service

US-Canadian Forest Health Initiative "One Continent, One Forest, One Threat"

> **U.S. Endowment** for Forestry and Communities

Multidisciplinary project: modeling dispersal of SBW moths

Eastern spruce budworm (SBW) in boreal spruce–fir forests life cycle, defoliation, aerial dispersal, oviposition

Development cycle graphics adapted from Marshall and Roe (2021, *Physiology*)

Multidisciplinary project: modeling dispersal of SBW moths

Eastern spruce budworm (SBW) in boreal spruce–fir forests life cycle, defoliation, aerial dispersal, oviposition

Focus on Quebec + New Brunswick + Maine

Weather Research & Forecasting (WRF) Model v4.1

Pre-processing: 1 month at a time single-processor, high-memory

Main WRF model: 1 day (30h) at a time 60+ processors, ~2GB memory each separate days can run concurrently

Post-processing: 1 output file at a time single-processor, distributed

HTCondor DAGMan script(s) with mixed submission protocols HTC \rightarrow HPC \rightarrow HTC

There is no way (yet) to count the SBW moth population, but say ~10¹¹

Simulate 10³ random moths

- Adult dispersal is weather-driven, occurs almost nightly in summer
- M + F have diff. flight capabilities \rightarrow flight altitudes + distances

There is no way (yet) to count the SBW moth population, but say ~10¹¹

Simulate 10^3 random moths \rightarrow 2–12 GB mem, 10–18 GB disk, 2–8 h

Consider a representative (?) sample \rightarrow 10⁶ moths (~1/10⁵ × the pop. guess)

So, simulate 10^3 random moths 10^3 times \rightarrow Monte Carlo ensemble approach \rightarrow HTC with UW + OSG resources

Also: calibration w/ radar, uncertain parameters, sequential nights, etc.

Part 1: Model description (pub'd Jan 2022)

Contents lists available at ScienceDirect
Torisi vietu ving)
Agricultural and Forest Meteorology
journal homepage: www.elsevier.com/locate/agrformet
ren long distance disperaal of spruce budworm moths ma). Part 1: Model description Sturtevant ⁶ , Rémi Saint-Amant ⁶ , Joseph J. Charney ^d , nger ⁶ , Philip A. Townsend ⁸ , Jacques Régnière ⁶ writy of Wicomi-Madian, Madian, Madian, Wi 33706, USA n, Riblindmer, WI 5450, USA n, Landing, MI 49910, USA
A B S T R A C T
Long-term studies of insect populations in the North American boreal forest have shown the vital importance of
long-distance dispersal to the maintenance and expansion of insect outbreaks. In this work, we extend severa
ology and behavior of the adult eastern spruce budworm (SBW) moth, <i>Choristoneura fumiferana</i> (Clemens). A
outbreak of defoliating SBW in Quebec, ongoing since the mid-2000s, already covers millions of hectares of
rorests in eastern canada and threatens to spread into neighboring areas through annual summertime episodes of long-distance dispersal. Such flight events in favorable conditions frequently include billions of SBW moth
dispersing in the warm atmospheric boundary layer, typically starting around sunset and often lasting throug
several hours of wind-driven transport over hundreds of kilometers. Successful SBW dispersal to possibly distar
an open-source individual-based modeling framework developed in Python for the simulation of these weather
driven SBW dispersal events. Using seasonal SBW phenology results from BioSIM at known outbreak location
and high-resolution Weather Research and Forecasting (WRF) model output, we focus on modeling dispersa flights over two successive nights in July 2013 in southern Ouebec. Our flight model closely reproduces the SRI
spatial patterns and motions observed by weather surveillance radar over the St. Lawrence estuary. Wit
SBW-pyATM we can estimate landing locations for both male and female SBW and the resulting spatial pattern

doi: 10.1016/j.agrformet.2022.108815

- Adult dispersal is weather-driven, occurs almost nightly in summer
- Each night's cohort includes "new" moths *and* those that survived the previous night(s)

2013 BioSIM median DOY for adult SBW eclosion

- Adult dispersal is weather-driven, occurs almost nightly in summer
- Each night's cohort includes "new" ^{50°N} moths *and* those that survived the previous night(s) ^{49°N}
- F lay eggs on host trees, poss.
 at each new landing location
 → daily changes in weight and flight capability

Stochastic simulations

- random subsets of available moths
- liftoff times vary with local conditions
- weather, esp. near the surface (BL)
- \rightarrow Monte Carlo ensemble of simulations

Sequential nightly simulations

- accounting variety of prior results
- compounded timelines + variants
- → Markov chain Monte Carlo process with Bayesian likelihood updating

ATM WRF-NARR d03 20130624 subdag.sub using dynamic generation of flight modeling ensemble

JOB ATM_20130624 ATM_WRF-NARR.sub VARS ATM_20130624 grid="d03" begin_date="20130624" end_date="20130625" nreps="10" SCRIPT PRE ATM_20130624 ATM_WRF-NARR_pre.sh d03 20130624 20130625 SCRIPT POST ATM_20130624 ATM_WRF-NARR_post.sh d03 20130624 20130625

ATM WRF-NARR.sub template submit file using Flocking + Glide-In (OSG) with daily moth input and WRF-based input universe = vanilla log = ATM WRF-NARR_\$(grid)_\$(begin_date)_default_\$(Process).log output = ATM WRF-NARR \$(grid) \$(begin date) default \$(Process).out error = ATM WRF-NARR \$(grid) \$(begin date) default \$(Process).err requirements = (OpSys == "LINUX") && (OpSysMajorVer >= 7) transfer input files = miniconda.tar.qz,Circadian calculations.py,Clock.py,Flier class.py,Flier qrids.py,Flier setup.py,Flier summary.py, Geography.py, Interpolation.py, Map class.py, Model control.py, Model initialization.py, Model wrapup.py, Plots gen.py, Radar class.py,SBW empirical.py,Simulation specifications WRF-NARR \$(grid) \$(begin date).py,Solar calculations.py, Temporal operations.py, WRFgrids class.py, ATM WRF-NARR \$(grid) \$(begin date) ready moths.csv, WRF out reduced \$(grid) \$(begin date)06-\$(end date)12.tar.gz executable = ATM WRF-NARR.sh arguments = \$(grid) \$(begin date) \$(end date) \$(Process) request cpus = 1request memory = 8GB request disk = 36GB +WantFlocking = true +WantGlideIn = true queue \$(nreps)

Stochastic simulations

- random subsets of available moths
- liftoff times vary with local conditions
- weather, esp. near the surface (BL)
- \rightarrow Monte Carlo ensemble of simulations

Sequential nightly simulations

- accounting variety of prior results
- compounded timelines + variants
- → Markov chain Monte Carlo process with Bayesian likelihood updating
- ➔ Probabilistic outcomes over the mating + dispersal + oviposition period

- Adult dispersal is weather-driven, occurs almost nightly in summer
- Each night's cohort includes "new" moths *and* those that survived the previous night(s)
- F lay eggs on host trees, poss.
 at each new landing location
 → daily changes in weight and flight capability

- Adult dispersal is weather-driven, occurs almost nightly in summer
- Each night's cohort includes "new" moths *and* those that survived the previous night(s)
- F lay eggs on host trees, poss.
 at each new landing location
 → daily changes in weight and flight capability
- M immigration \rightarrow increased poss. of mating success

