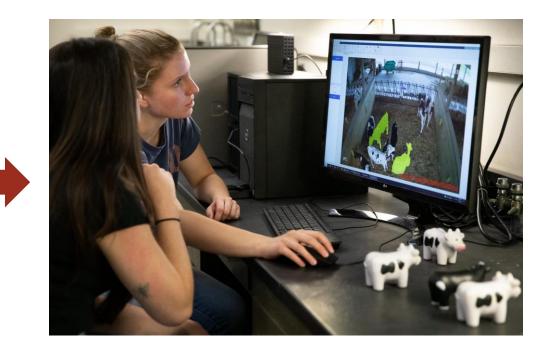
Leveraging computer vision systems for monitoring animal health and productivity on dairy farms

ARIANA NEGREIRO PHD STUDENT ADVISOR: DR. JOAO DOREA

DEPARTMENT OF ANIMAL & DAIRY SCIENCES UNIVERSITY OF WISCONSIN-MADISON



My Background

Animal scientist Focus on animal health and management

CHTC allowed me to accelerate my research and perform analyses that would be impossible otherwise

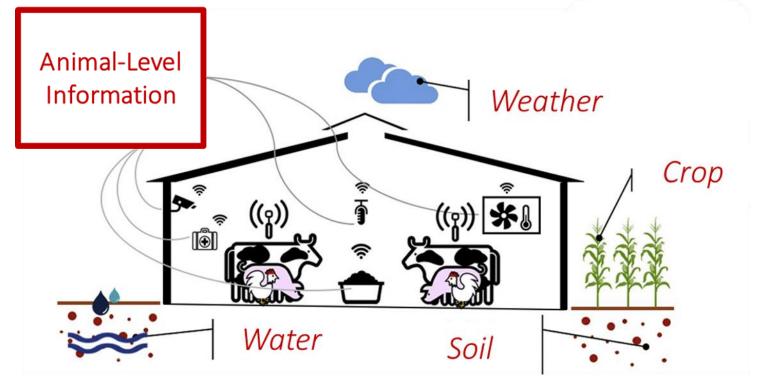
Outline

Research Implementation

My research

Computational implementation

- computing requirements
- deployment
- throughput/time

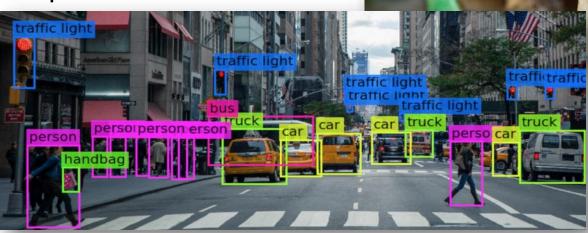

Using CHTC/HTCondor CHTC

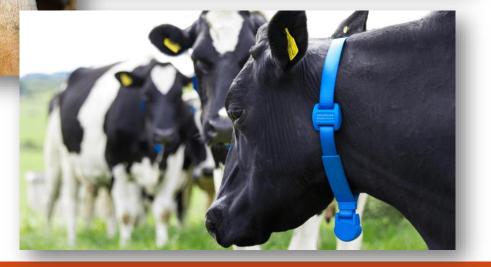
Personal and professional impact

• Research applications of machine learning and computer vision for farm management and genetic selection

Sensors: Wearable Cameras IR Spec. RFID Sound Housing Animal Identification Animal Behavior Body Weight BCS/Composition Milk Components Milk Yield Estrus Event Feed Intake Feed Efficiency Disease Risks

Monitoring Behavior in Livestock


CHTC


Implementation

Current methods for monitoring cattle:

Research

- Visual observation
 - Large-scale applications?
 - Subjectivity
- Wearable sensors
- * Computer vision

Benefits of Computer Vision

Research

Implementation

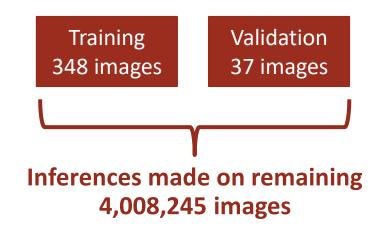
СНТС

- Cameras are affordable and easy to install
- Ability to monitor multiple animals at a time
- Images provide a great amount of information
 - Animal location/action
 - Social interaction
 - Weather/season
 - Health/mobility

Research: Cow mouth tracking

Research

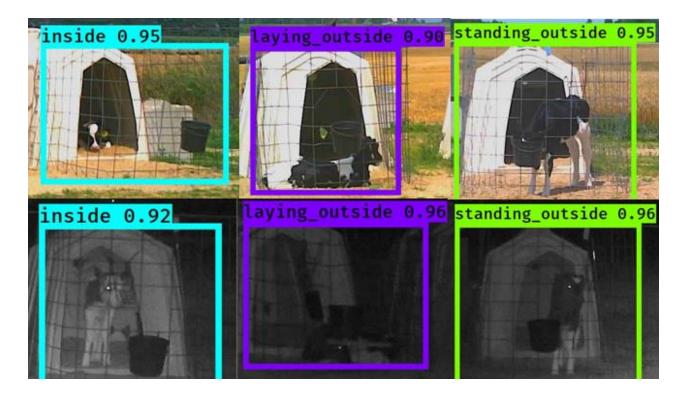
Implementation


CHTC

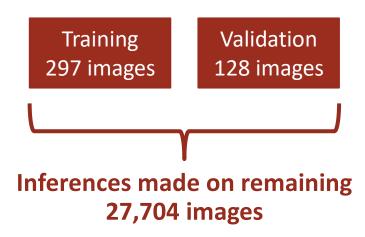
Impact

- 1,662,417 images
 - Cropped for each individual cow (utilizing CHTC)
 - 4,008,630 sequential images

• Mask R-CNN



Research: Calf heat stress detection


Research

Implementation

CHTC

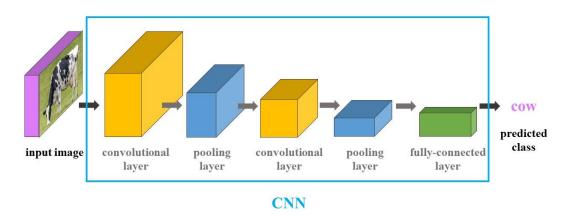
- 27,704 images
- YOLOv3
- tinyYOLOv3

Research: Calf identification and growth monitoring

Department of

- 27 + TB of data
- Current project
- Xception (ongoing analyses)

Implementation


Research

Implementation

🔪 СНТС

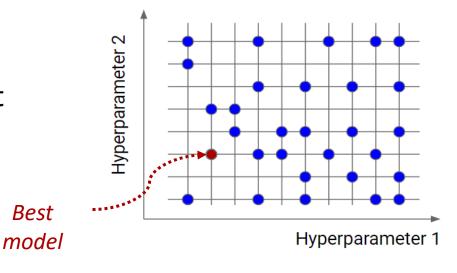
Impact

• These analyses utilize complex algorithms

- Large datasets (thousands or millions of images)
- Image data is large (400x600 = 24,000 pixels)
- Image preprocessing
- Computationally demanding to train

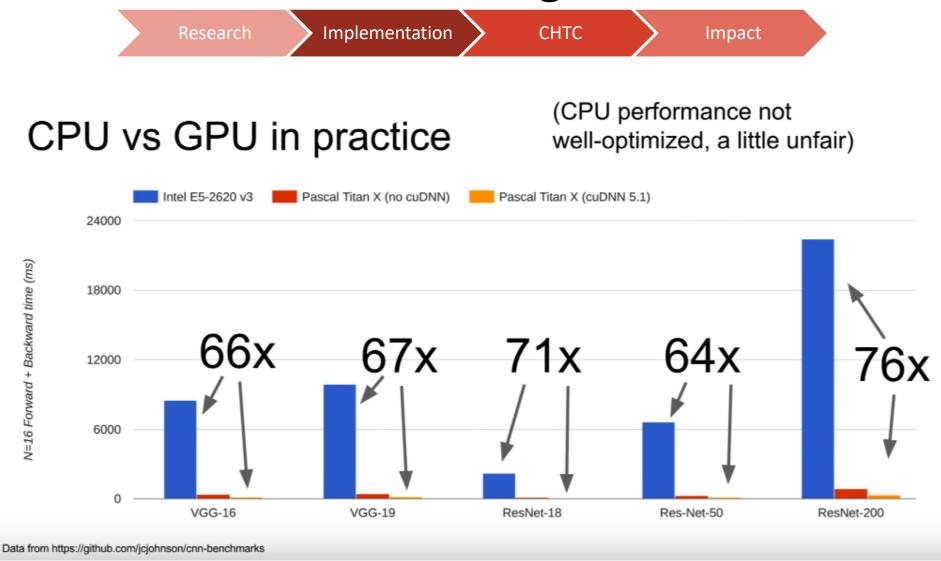
- Mask R-CNN
 - 44 million parameters
- YOLOv3
 - 40.5 million parameters
- tinyYOLOv3
 - 8.9 million parameters
- Xception
 - 22.8 million parameters

Neural Network Training


Implementation CHTC

Impact

• Multiple neural networks to train independently:


- Different datasets
 - Evaluate which one is the best for training (preprocessing, data collection strategies, etc)
 - Perform multiple experiments (effect of day, lighting, etc)
- Hyperparameter tuning
 - Train using multiple combinations to find the best

Stanford cs231n.

Neural network training: GPUs vs CPUs

- Using since Fall 2021
- > 4,000 computing hours
- Larger projects require dozens of trained neural networks
- Each project contains thousands of images for training, and 100,000s or even millions of images for inference

Using CHTC/HTCondor

CONDA

Research

СНТС

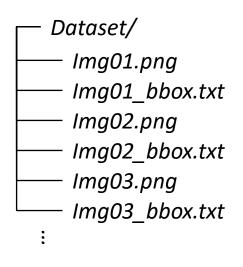
Impact

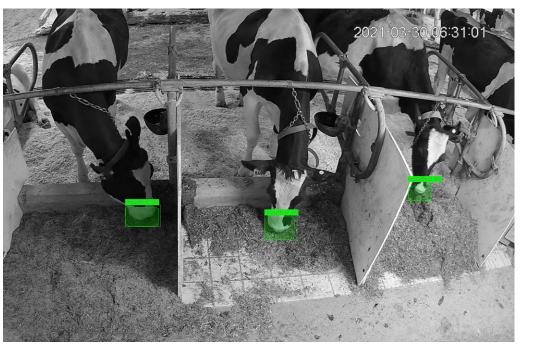
- Datasets stored on Staging
- Python environments using Miniconda
 - Compressed environment packs stored on SQUID
- Queue jobs using txt files

knn_iteration0_60_120_2048_000,xception,30,60,8,59 knn_iteration0_60_120_2048_050,xception,30,60,8,59 knn_iteration0_60_120_2048_075,xception,30,60,8,59 knn_iteration0_60_120_2048_100,xception,30,60,8,59 xgboost_iteration0_60_120_2048_000,xception,30,60,8,59 xgboost_iteration0_60_120_2048_050,xception,30,60,8,59 xgboost_iteration0_60_120_2048_075,xception,30,60,8,59 xgboost_iteration0_60_120_2048_090,xception,30,60,8,59

- Template folder for each category of project (containing .sub, .sh, python files, etc)
 - Each template expects datasets following a certain format and outputs files/folders following a certain format

Use case: cow mouth detection




mentatic

CHTC

Impact

Input: Dataset containing images and bounding boxes

physical measurements

- distance traveled
- acceleration
- velocity

provides insight on feeding behavior, health, and milk production

• Output: Bounding box predictions on test set

Use case: calf detection

Research

mplementat

CHTC

Impact

- Input: Dataset containing images and masks
- Output: Mask predictions on test set

Use case: edge computing

Research

ementation

CHTC

Impact

Deploy trained model (trained using CHTC) in edge computing applications to make inferences real-time

Use case: calf identification

• Collecting images 24/7 following calves the first 2 years of life

- Tracking growth, health, and behavior
- Estimated > 100 TB data to be acquired

CHTC Benefits/Limitations

CHTC

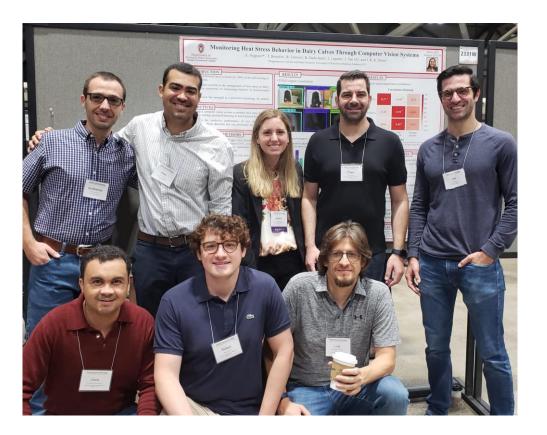
Impact

Pros:

- Potential ability to access data directly from our own servers (access point)
- Checking logs to have an idea of how far into the job (which epoch, for example) the 12/24/72hr limits were reached
- Flexibility to submit jobs to CPUs or GPUs depending on availability and size of job
- The option to have emails sent when jobs are done running

Cons:

 Large datasets can take very long to transfer, especially when working from home using a VPN


Personal & Professional Impact

Research

> Impler

CHTC

- Ability to perform data analysis that would be impossible otherwise
 - Advancing knowledge of animal health and behavior
- Experience accessing a remote Linux server
- Exposure using a high-throughput computing system
- Consider data flow and automation within remote server environments
- Cultivated skills that will help me in my future career, opened opportunities to present my research in multiple conferences, and work with a great team!

2021-03-30 0<mark>6:31:01</mark>

Thank you! negreiro@wisc.edu

