
Organizing and Submitting HTC
Workloads on the OSPool

OSG Research Facilitation Team

OSG User School 2022 - Scaling Up 1

Overview of the Scaling Up Process

1. Run a single job. 2. Test a workload of 5-10
jobs.

3. Scale up to 100s-1000s* of
jobs

OSG User School 2022 - Scaling Up 2

Overview of the Scaling Up Process

1. Run a single job. 2. Test a workload of 5-10
jobs.

3. Scale up to 100s-1000s* of
jobs

OSG User School 2022 - Scaling Up 3

Review Job Components;
How to Organize HTC

Workload Files

Overview of the Scaling Up Process

1. Run a single job. 2. Test a workload of 5-10
jobs.

3. Scale up to 100s-1000s* of
jobs

OSG User School 2022 - Scaling Up 4

Tips for Scaling Up

Overview of the Scaling Up Process

1. Run a single job. 2. Test a workload of 5-10
jobs.

3. Scale up to 100s-1000s* of
jobs

OSG User School 2022 - Scaling Up 5

Tools For Monitoring Jobs

Part 0: Assembling Workload
Components

6

Recap: HTC Workload Components

What components do you need for an HTC workload (or single job)?

We have talked about all of these things this week!

- Monday: HTCondor Job Submission
- including coordinating input and output files

- Tuesday: Software
- Wednesday: Data

7

Reflection

What are the components you need for your HTC workload?

What results will you generate?

What other files will be generated by HTCondor or the jobs?

8

Part I: Organizing HTC Workload
Components

9

High Throughput Computing (HTC)
One of our favorite HTC examples: baking the world’s largest/longest cake

In computational terms: solving a big problem (the world’s longest cake) by executing many
small, self-contained tasks (individual cakes) and joining them.

Photos: Arun Sankar via https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake 10

https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake

High Throughput Computing (HTC)
One of our favorite HTC examples: baking the world’s largest/longest cake

In computational terms: solving a big problem (the world’s longest cake) by executing many
small, self-contained tasks (individual cakes) and joining them.

Photos: Arun Sankar via https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake

Not pictured:
How the bakers organized all the inputs (ingredients) and outputs

(individual cakes) before they were joined together.

In HTC workload terms: how are you going to organize the components of
your workload (software, inputs, outputs) on the Access Point?

11

https://www.theguardian.com/world/2020/jan/16/indian-bakers-rise-to-task-of-making-worlds-longest-cake

12

Why organize?
By default, HTCondor writes
all job files (input, output,
HTCondor logs, etc.) back to
the same place, which
means your home directory
can look something like
this:

This makes it hard to find
things!

13

Why organize?
We can improve our
workflow by intentionally
organizing our input and
output files on the Access
Point.

HTC Workloads as Input/Output Sets

OSG User School 2022 - Scaling Up 14

The next example will model workloads that use many input files
to produce many output files.

Example: Text Analysis

15

Organizational Plan For Our Files

16

wordcount.sub

wordcount.py

input/
Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

We will assume that we want to put
our input files (books) in one folder,
and our output files (word counts) in
another folder.

Organizational Plan For Our Files

17

wordcount.sub

wordcount.py

input/
Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

There are additional files that will be
produced by the job as well that we
should consider – the HTCondor log,
stdout and stderr. We’ll put these into
two folders.

Coordinate HTCondor and File Structure

18

wordcount.sub
wordcount.py
input/

Dracula.txt
...

output/
count.Dracula.txt
...

log/
job.0.log
...

errout/
job.0.out
job.0.err
...

submit file name: wordcount.submit
executable = wordcount.py
arguments = Dracula.txt

transfer_input_files = inputs/Dracula.txt
transfer_output_remaps =
“count.Dracula.txt=outputs/count.Dracula.txt”

log = logs/$(ProcId).log
error = errout/$(ProcId).err
output = errout/$(ProcId).out

queue 1

HTCondor Options for Organizing Files

19

Syntax Purpose Features

Transfer_output_remaps =

“file1.out=path/to/file1.out;

file2.out=path/to/renamedFile2.out”

Used to save output
files in a specific path
and using a certain
name

- Used to save output files to a
specific folder
- Used to rename output files to
avoid writing over existing files

Initialdir =

path/to/initialDirectory

Sets the submission
directory for each job.
When set, this is
becomes the base path
where output files will
be saved.

- Used to submit multiple jobs from
different directories
- Used to avoid having to write
some paths in other submit file
values

More Information: https://htcondor.readthedocs.io/en/latest/users-manual/file-transfer.html

Return Output to Specified Directory with
InitialDir

20

submission_dir/
job.sub
exec.py
Shared_vars.txt
results/

input.txt
output.txt
job.err
job.log
job.out

Separate Jobs with InitialDir

21

submission_dir/

job.submit

analyze.exe

job0/
file.in job.log job.err
file.out job.out

job1/
file.in job.log job.err
file.out job.out

job2/
file.in job.log job.err
file.out job.out

Organizing Larger Data Files

If we had larger data files, they need to be organized separately. On
OSG Connect, the place for these files is the “/public” folder

Files that belong in /public:
● Input: > 100Mb per file per job
● Output: > 1GB per file per job

Once inputs and outputs are placed in the right location, use the
appropriate HTCondor file transfer options to move the data to jobs.

22

Reflection

How big are the files in my input / output sets?

What organizational strategy makes sense for the next steps in my
analysis?
● Do you want inputs in one folder and outputs in another folder? Use

transfer_output_remaps.
● Do you have many outputs for each job that you’d like to group together, but keep

separate from other job outputs? Do you want to keep inputs/outputs for the same job
together? Maybe use initialdir.

How do you want to organize the HTCondor/system files?

23

Part II: Scaling Up

24

Overview of the Scaling Up Process

25

1. Run a single job: For each job type, get a test job working
reliably & tune resource needs

2. Test a small workload: Scale up to ~10 jobs, checking
reliability & Access Point resource demand

3. Scale up: Continue scaling up in 10–100× increments,
checking for & fixing issues

Stage 1: Get One Job Running

You know how to do this!😊
● Gather executable, inputs, arguments, etc.*
● Estimate initial resource needs*
● Write a submit file
● Submit!
● Review all outputs, including log, output, and error files
● Check actual resource usage and update resource needs*
● Repeat until (fairly) accurate and reliable

* More details on next slides

26

Stage 1: Tips for Initial Test Jobs

● Test one of each kind of job you will run (e.g., prep, simulation, analysis)
● Select smaller data sets or subsets of data for your first test jobs

● Pick test jobs that will reproduce results from elsewhere, if possible
● Name files carefully to help identify which results go with which tests

● Make sure you understand and can run your software
○ Software — executable, dependencies, maybe a wrapper script to prepare

environment
○ Command-line arguments
○ Input files

27

Stage 1: Estimating Initial Resource Needs

CPU
● By default, start with 1
● Unless you know for sure that you executable uses a certain number > 1

Memory
● Start with the total memory available on laptop or where it ran before
● It’s ok if this is a lot the first time, you will fine-tune later

Disk
● Estimate (as best you can) and sum sizes of: executable (+ environment),

input files, output files, temporary files, standard output/error

28

Stage 1: Run, Refine, Repeat

After running a test job:
● Check logs and output for errors, warning, holds, etc.
● Check HTCondor job log for actual resource usage
● Fix issues, update resource needs, run 1 job again!
● Good opportunity to check “fit” of jobs to HTC and maybe adjust

29

005 (1234.000.000) 2022-07-28 09:12:34 Job terminated.
(1) Normal termination (return value 0)

[...]
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 40 30 4203309
Memory (MB) : 1 1 1

Stage 2: Scale To About 10 Jobs

For each kind of job, once you have 1 job working, try about 10
● Try a representative variety of arguments and input files
● Start developing methods for checking results of all jobs
● Estimate total resource needs for the Access Point itself
● Repeat tests at this scale until issues are fixed & resources are

accurate

30

Stage 2: Try Various Inputs

For Stage 1, the suggestion was to keep things short and simple
● For Stage 2, it is time to explore the entire range of inputs to your jobs

○ Different command-line arguments; e.g., start, middle, and end of parameter
sweep

○ Different input files; e.g., small, medium, and large — whatever makes sense
for you

● As you explore, you may find that per-job resource needs vary
● Set your resource requests a bit higher than maximum observed usage

○ For example, if 10 test jobs used between 938 MB – 1.23 GB of memory,
update your submit file to request 1.5 GB memory

● After any changes, run the same test again and re-evaluate

31

Stage 2: Checking Results of Multiple Jobs

Start developing methods for checking the results of multiple jobs
● Output from your executable (i.e., your research results)
● Debugging output: standard output and error files, executable logs, etc.
● HTCondor job log file (log = xxx in your submit file)

This may be one of the most overlooked aspects of scaling up!
● Checking 1 job is easy; checking 10 is tedious; checking 1000s by hand? 😭
● Techniques include:

○ Sampling
○ Developing tools to automate (see Part III)

● Sounds a bit like research, right? You know how to do that…

32

Stage 2: Estimate Access Point Needs

Do not forget about your Access Point – it is a shared resource, too!
● Storage space for files

○ Based on a run of 10 jobs, estimate total number and size of all files for full
production

○ Do you have enough storage space on the Access Point? If not, what options
exist?

○ Review the Data lecture for more suggestions

● Number of running jobs
○ In theory, how many jobs could you have running at once?
○ Each running job uses some CPU and memory on the Access Point itself
○ If submitting over 10,000 jobs consider limiting (throttling) running and idle

jobs on Access Point

33

Stage 3: Iterate in Steps of 10–100×

By now, you have tested tens of jobs, maybe in a workflow; what next?
● Continue scaling up in increments of 10–100 times the number of jobs
● All the considerations from Stage 2 apply at each increment
● Be sure to find, understand, and hopefully fix issues before moving on

As you scale up, a challenge is to distinguish among:
● Real issues with your jobs, workflow, resource requests, etc.
● Real issues with certain subsets of your jobs
● Temporary issues with the HTC infrastructure itself
● Bugs and other longer-lasting issues with the infrastructure
● We can help! Email us with support requests if you get stuck.

34

Reflection

Where are you in the scaling up process?

What are three things you should consider in your current stage?

35

Other Thoughts: What’s Your Context?

Major considerations (details vary a lot!):
● Computational workflow: Automate running of different jobs in

order
● Technical workflow: Management of runs, files, etc.
● Research workflow: Revisit goals, scale, and how computing fits

36

Other Thoughts: Computational Workflows

● Do you have different kinds of jobs that need to be run in a specific
order to implement your overall computational goal?

● If so, you may be able to use HTCondor DAGMan (or other tools)
to automate parts or all of the whole process.

● Attend the optional DAGMan lecture later today if you think this
situation applies to you!

● Test computational workflows with few jobs of each type, just as
you would in Stage 2.

37

Other Thoughts: Technical Workflow
Considerations

● How will you get the necessary files to the Access Point and, if
needed, OSDF Origin?

● How will you manage individual sets of runs? For example, how
will you organize files (see earlier)? If you need to rerun jobs, how
will you keep track of each run?

● How will you move results off of the Access Point (which is
temporary storage only)? Do you have a place to archive results?
How will it be organized?

38

Other Thoughts: Research Workflow
Considerations
Now that you have run some jobs:
● Consider the balance between human effort (yours!) and

computer time; will the use of HTC actually save you time in the
long run and improve your research?

● Estimate how much total calendar time it will take your
computational work to complete. Do you have enough time before
your next deadline?

● Could you do even more? If things are going well, could you
expand your research questions by using more computing? Think
big!

39

Part III: Tools for Monitoring

40

Tools for Learning About Jobs

HTCondor’s job attribute information
• Accessed via condor_q, or condor_history

Files
• HTCondor log files
• Standard error/standard output files

OSG User School 2022 - Scaling Up 41

Job Attributes with condor_q

HTCondor stores a list of information about each job.
This information is stored in this format:

• AttributeName = value

You can find a list of attributes for a single job by running:
• condor_q -l JobID

You can print out specific attributes by using the “format” or “auto-
format” flags with an HTCondor command:

• condor_q -af Attribute1 Attribute2
• adds job number: condor_q -af:j Attribute1 Attribute2

42

Interesting Job Attributes

• Job identifying information
• ClusterID
• ProcID
• Cmd
• Arguments
• UserLog

• Where it ran
• LastRemoteHost
• MATCH_EXP_JOBGLIDEIN_Resour

ceName

• Resource Request and Usage
• RequestCpus (Memory, Disk)
• MemoryProvisioned (Disk)
• CPUsUsage (MemoryDisk)

• Timing
• EnteredCurrentStatus
• QDate

OSG User School 2022 - Scaling Up 43

Interesting Job Attributes

• Codes
• JobStatus
• ExitCode
• HoldReasonCode
• HoldReasonSubCode,
• NumHoldsByReason

• Counts
• NumJobStarts
• NumShadowStarts
• NumSystemHolds,

OSG User School 2022 - Scaling Up 44

Checking Completed Jobs

• condor_history
• Contains finalized job attributes for completed jobs

• some have different names (HoldReason --> LastHoldReason)
• Easy to use constrain and to display values (like condor_q)
• Can be slow to search (latest first) and may drop old records quickly

• HTCondor job log files (log = xxx in submit)
○ Contain a lot of information
○ That is both a blessing and a curse
○ Somewhat easy to parse — or use HTCondor Python bindings to help

45

HTCondor Job Log Files

● One big, combined file, or one per job? Your preference, really
● With tens or hundreds of jobs (& more), not practical to review

manually
● Can try to use the grep command-line tool to find specific lines

46

HTCondor Job Log Files: Terminations

To find when every job ended:
$ grep '^005' LOGS
(LOGS can be one file, a list of files, or a glob (using *) of files)
To find termination codes (exit codes) for every job:
$ grep termination LOGS
(will not show job IDs, though)
To get counts by termination code:
$ grep termination LOGS | sort | uniq -c

47

HTCondor Job Log Files: Resource Lines

To get memory resource lines:
$ grep -h 'Memory (MB) *:' LOGS >
memory_resources.txt
To get disk resource lines:
$ grep -h 'Disk (KB) *:' LOGS > disk_resources.txt
Import the resulting files into Excel (with some attention to import options)

For file transfers:
$ grep -h 'Total Bytes Sent By Job' LOGS
$ grep -h 'Total Bytes Received By Job' LOGS

48

HTCondor Job Log Files: Checking on Holds

To view all job holds, their reasons, and related codes:
$ grep -h -A 2 '^012' LOGS
(Omit the -h option to see log filenames for each hit.)
Note: The OSPool may automatically release (rerun) some held jobs; if
you don’t look for them explicitly, you may never know those holds
occurred

49

