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Intro to HTC and OSG
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Overview

• What is high throughput computing (HTC) ?
• What is the OSG?
• How do you get the most out of the above?
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HTC: An Analogy
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HTC: An Analogy

5



OSG User School 2022

Serial Computing

• Serial execution, running one task at a time
• Overall compute time grows significantly as 

individual tasks get more complicated (long) 
or if the number of tasks increases

• How can you speed things up?

tim
e

What many 
programs look like:
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High Throughput Computing (HTC)

• Parallelize!
• Independent tasks run on different cores

tim
e

n cores
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High Performance Computing (HPC)

• Benefits greatly from:
- CPU speed + homogeneity
- shared filesystems
- fast, expensive networking (e.g. 

Infiniband) and co-located servers
• Requires special programming (MP/MPI)
• Scheduling: Must wait until all 

processors are available, at the same 
time and for the full duration

• What happens if one core or server 
fails or runs slower than the others?
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High Throughput Computing (HTC)

• Scheduling: only need 1 CPU core for each (shorter wait)
• Easier recovery from failure
• No special programming required
• Number of concurrently running jobs is more important
• CPU speed and homogeneity are less important

9
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Example Local Cluster
• UW-Madison’s Center for 

High Throughput 
Computing (CHTC)

• Recent CPU hours:
~120 million hrs/year (~15k cores)
Up to 15,000 per user, per day

(~600 cores in use)
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CHTC Pool
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high-memory
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HTC Examples

11

text analysis (most genomics …) parameter sweeps

statistical model optimization
(MCMC, numerical methods, etc.)

multi-start simulations

multi-image and 
multi-sample analysis
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Signs of HTC-able work

• Any mention of numerous samples, images, models, parameters, etc.
• Nearly anything written by the primary user (e.g. c/fortran, Python, R)

- Break out of loops! 
- Common internal parallelism could really be HTC (e.g. Matlab’s ‘parfor’, 

‘distributed server’, etc.)
• Some community softwares that use multi-threading or 

multiprocessing (e.g. OpenMP)
- many are simply looping over data portions or independent tasks
- HTC-able: break up input (or ‘parameter’ space), turn off multi-threading, combine 

results
• Long-running jobs (especially if non-MPI); see above explanations
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Real HTC Use Cases
OSG website ‘Spotlight’
https://osg-htc.org/spotlight.html

OSG All-Hands Meetings (research talks usually day 1)
https://osg-htc.org/all-hands/

HTCondor Week Presentations (usually first or last day)
https://htcondor.org/past_condor_weeks.html
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Example Challenge

You need to process 72 brain images for each of 168 
patients. Each image takes ~1 hour of compute time.

168 patients x 72 images = ~12000 tasks = ~12000 hrs

Conference is next week.
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Distributed Computing

• Use many computers, each running one 
instance of our program

• Example:
- 1 laptop (1 core) => 12,000 hrs =  ~1.5 years
- 1 server (~40 cores) => 750 hrs =  ~2 weeks
- 1 MPI job (400 cores) => 30 hrs =  ~1 days
- A whole cluster (10,000 cores)  = ~1 hour
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What computing resources are available?

• A server?
• A local cluster?

- Consider: Queue wait time? Can you program MP/MPI? 
Typical clusters tuned for HPC (large MPI) jobs may not be 
best for HTC workflows! Could you use even more than 
that?

• OSG?
• Other

- EGI (European Grid Infrastructure)
- Other national and regional grids
- Commercial cloud systems (e.g. HTCondor on AWS)

16



OSG User School 2022

What is the 
OSG?

a consortium of researchers and institutions who share compute and 
data resources for distributed high-throughput computing (dHTC) 
in support of open science
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• Researchers
• Science Gateways
• Multi-Institution Collaborations

- Atlas/CMS (Higg Boson), IceCube, 
South Pole Telescope, and others

• Academic Institutions and 
National Laboratories 
that support the above

Campuses are critical to 
OSG’s ability to advance research.

Who Participates?
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Research Communities 
(Pools) in the OSG

(“virtual organizations”)

>2 billion hrs in the last year

gracc.opensciencegrid.org
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“Open Science Pool”
• single researchers/groups (OSG Connect)
• smaller multi-institution collaborations
• campus access points
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Can the OSPool Help?
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Hypothetical Throughput, 12k core hours
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Hypothetical Throughput, 12k core hours
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Proactive, personalized facilitation and support for:
• Individual researchers via OSG Connect
• Institutions and large collaborations

- Share local resources via the OSG
- Locally-supported access points

§ data and identity federation 
§ integration of cloud capacity

- Local HTC Capacity
§ Learn from OSG’s Research Computing Facilitators

• Presentations/Training in OSG compute execution, 
HTC Facilitation, and local HTC systems administration

For Researchers and Campuses
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Example Local Cluster
• UW-Madison’s Center for 

High Throughput 
Computing (CHTC)

• Recent CPU hours:
~120 million hrs/year (~15k cores)
Up to 15,000hrs per user, per day

(~600 cores in use)
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CHTC Pool
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Intro to Job Submission 
with HTCondor
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Overview

• How does the HTCondor job scheduler work?
• How do you run, monitor, and review jobs?
• Best ways to submit multiple jobs (what we’re here 

for, right?)
• Testing, tuning, and troubleshooting to scale up.
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HTCondor History and Status
• History

- Started in 1988 as a “cycle scavenger”

• Today
- Developed within the CHTC by professional developers
- Used all over the world, by:

§ campuses, national labs, Einstein/Folding@Home
§ Dreamworks, Boeing, SpaceX, investment firms, …
§ The OSG!!

• Miron Livny
- Professor, UW-Madison Computer Sciences
- CHTC Director, OSG Technical Director
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HTCondor -- How It Works
• Submit tasks to a queue (on a access point)
• HTCondor schedules them to run on 

computers (execute points)

access point
execute

point

execute
point

execute
point
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Terminology: Job
• Job: An independently-scheduled unit of computing 

work
• Three main pieces:

Executable: the script or program to run
Input: any options (arguments) and/or file-based information
Output: files printed by the executable

• In order to run many jobs, executable must run on the 
command-line without any graphical input from the user
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Terminology: Machine, Slot
• Machine

- A whole computer (desktop or server)
- Has multiple processors (CPU cores), some amount of memory, 

and some amount of file space (disk)

• Slot
- an assignable unit of a machine (i.e. 1 job per slot)
- may correspond to one core with some memory and disk
- a typical machine will have multiple slots

• HTCondor can break up and create new slots, dynamically, as 
resources become available from completed jobs
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Job Matching
• On a regular basis, the central manager reviews

Job and Machine attributes and matches jobs to Slots.

access point
execute

point

execute
point

execute
point

central manager
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Job Execution
• Then the access and execute points 

communicate directly.

access point

execute
point

execute
point

execute
point

central manager
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Single Computer

queue +
central manager

slot

slot

slot
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BASIC JOB SUBMISSION
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Job Example
• program called “compare_states” (executable), which 

compares two data files (input) and produces a single 
output file.

38

wi.dat

compare_
states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out
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executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
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executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• List your executable 

and any arguments it 
takes

• Arguments are any 
options passed to the 
executable from the 
command line

$ compare_states wi.dat us.dat wi.dat.out
40
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executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• comma-separated list of 

input files to transfer 
to the slot

wi.dat

us.dat

41
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Basic Submit File
• HTCondor will transfer 

back all new and 
changed files (output) 
from the job, 
automatically.

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

wi.dat.out
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Basic Submit File
• log: file created by 

HTCondor to track job 
progress
- Explored in exercises!

• output/error: 
captures stdout and stderr
from your program (what 
would otherwise be printed 
to the terminal)

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1
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Basic Submit File
• request the resources 

your job needs.
- More on this later!

• queue: final keyword 
indicating “create 1 job” 
according to the above

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1
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SUBMITTING AND 
MONITORING

45
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Submitting and Monitoring
• To submit a job/jobs:  condor_submit submit_file

• To monitor submitted jobs:  condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/22 10:35:54
OWNER  BATCH_NAME             SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS
alice CMD: compare_states 5/9  11:05      _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit
HTCondor Manual: condor_q 46

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html
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More about condor_q
• By default, condor_q shows your jobs only and batches

jobs that were submitted together:

• Limit condor_q by username, ClusterId or full 
JobId, (denoted [U/C/J] in following slides).

$ condor_q
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/22 10:35:54
OWNER  BATCH_NAME             SUBMITTED   DONE   RUN    IDLE  TOTAL JOB_IDS
alice  CMD: compare_states   5/9  11:05      _      _      1      1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterID.ProcID
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More about condor_q
• To see individual job details, use:
condor_q –nobatch

• We will use the -nobatch option in the following slides 
to see extra detail about what is happening with a job

$ condor_q -nobatch
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92>
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD
128.0        alice 5/9  11:09   0+00:00:00 I  0   0.0 compare_states
128.1        alice 5/9  11:09   0+00:00:00 I  0   0.0 compare_states
...

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended
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Job Idle

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 I  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

49

Access Point
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Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618>
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:00:00 <  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(execute_dir)/

50

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

(execute_dir)/

Access Point Execute Point
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Job Running
$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128.0        alice 5/9  11:09   0+00:01:08 R  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

51

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out
subdir/tmp.dat

Access Point Execute Point
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Job Completes

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID          OWNER      SUBMITTED     RUN_TIME ST PRI SIZE CMD

128          alice 5/9  11:09   0+00:02:02 >  0   0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended
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(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out
subdir/tmp.dat

Access Point Execute Point
(submit_dir)/

job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err
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Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID      OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

53

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

Access Point
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Reviewing Jobs
• To review a large group of jobs at once, use 
condor_history

As condor_q is to the present, condor_history is to the past

$ condor_history alice
ID      OWNER    SUBMITTED   RUN_TIME    ST  COMPLETED   CMD 

189.1012 alice 5/11 09:52   0+00:07:37 C   5/11 16:00 /home/alice
189.1002 alice 5/11 09:52   0+00:08:03 C   5/11 16:00 /home/alice
189.1081 alice 5/11 09:52   0+00:03:16 C   5/11 16:00 /home/alice
189.944  alice 5/11 09:52   0+00:11:15 C   5/11 16:00 /home/alice
189.659  alice 5/11 09:52   0+00:26:56 C   5/11 16:00 /home/alice
189.653  alice 5/11 09:52   0+00:27:07 C   5/11 16:00 /home/alice
189.1040 alice 5/11 09:52   0+00:05:15 C   5/11 15:59 /home/alice
189.1003 alice 5/11 09:52   0+00:07:38 C   5/11 15:59 /home/alice
189.962  alice 5/11 09:52   0+00:09:36 C   5/11 15:59 /home/alice
189.961  alice 5/11 09:52   0+00:09:43 C   5/11 15:59 /home/alice
189.898  alice 5/11 09:52   0+00:13:47 C   5/11 15:59 /home/alice

HTCondor Manual: condor_history

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html


OSG User School 2022

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host: <128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host: <128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1  - MemoryUsage of job (MB)
220  - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00  - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00  - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00  - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00  - Total Local Usage

0  - Run Bytes Sent By Job
33  - Run Bytes Received By Job
0  - Total Bytes Sent By Job
33  - Total Bytes Received By Job
Partitionable Resources :    Usage  Request Allocated

Cpus                 :                 1         1
Disk (KB)            :       14    20480  17203728
Memory (MB)          :        1       20        20
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whole 
computer

your request

Resource Requests
• Jobs are nearly always using a portion of a 

machine, and not the whole thing
• Very important to request appropriate resources 

(memory, cpus, disk)
- requesting too little: causes problems for your and 

other jobs; jobs might by ‘held’ by HTCondor
- requesting too much: jobs will match to fewer “slots” 

than they could, and you’ll block other jobs

56
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Ideal OSPool Job Sizes

57
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YOUR TURN!

58

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
submit 
server
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Thoughts on Exercises
• Copy-and-paste is quick, but you WILL learn more by 

typing out commands and submit file contents
• Ask Questions during Work Time! 
• Exercises in THIS unit are important to complete in 

order, before moving on! (You can save “bonus” 
exercises for later.)

• (See 1.6 if you need to remove jobs!)
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