0SG

Intro to HTC and HTCondor

Monday, July 25

Lauren Michael

This work was supported by NSF grants MPS-1148698, OAC-1836650, and OAC-2030508

Intro to HTC and OSG

Overview

 What is high throughput computing (HTC) ?
 What is the OSG?
 How do you get the most out of the above?

o HTC: An Analogy

e gL 7, oS
s O - 200N —

-3 S - -~
R e \
-~ . -
we -

% *n

’ 8 ~ “’Ig*‘:'hﬁ i aa-‘un x’\r&

g
.

X, : MEAI.S

OSG User School 2022

HTC: An Analogy

OSG User School 2022

o Serial Computing

What many
programs look like:

o Serial execution, running one task at a time

e Overall compute time grows significantly as
individual tasks get more complicated (long)
or if the number of tasks increases

e How can you speed things up?

time

OSG User School 2022

High Throughput Computing (HTC)

o Parallelize!
e Independent tasks run on different cores

n cores

)
vERTENE

OSG User School 2022 7

High Performance Computing (HPC)

Benefits greatly from: n cores i

— CPU speed + homogeneity
<

— shared filesystems o

— fast, expensive networking (e.g. e

Infiniband) and co-located servers =
Requires special programming (MP/MPI)

Scheduling: Must wait until all
processors are available, af the same
time and for the full duration

What happens if one core or server
fails or runs slower than the others?

~== High Throughput Computing (HTC)

OSG User School 2022

N cores i

Scheduling: only need 1 CPU core for each (shorter wait)
Easier recovery from failure

No special programming required

Number of concurrently running jobs is more important
CPU speed and homogeneity are less important

Example Local Cluster

e UW-Madison’s Center for
High Throughput

Computing (CHTC) CHTC Pool

» Recent CPU hours: single-core
~120 million hrs/year (~15k cores) high-memory
Up to 15,000 per user, per day multi-core
(~600 cores in use) o GPUs MPI

access
point

OSG User School 2022

HTC Examples

O — L R —]
035 i 16
z 03 s "
con] L N 2
£ 20 o

/ nmad e} 5 o ¢ 3 ozl 'l
I e w.m:svawmm o o 1o A ‘
Thls suggeststhat(hestromatoll(esfromCerro Gordo were deposited well after deposition of & a II S a 4
00s 1 00s 2
0

005 01 o015 02 025 03 005 01 o015 02 025 03

5 con- g -nmod————> Light Attenuation Light Attenuation
i mm ound. case conj———
e « - compound R T e S oy ¢ a

the precipitates and khe V\rgln Limestone stmmalolltes and probably ~ correlate to me terrestrial and = 0ss 9

s

o3)

035 s

/ 02 1

P T e P s 38 .
evaporitic facies of the Schnabkaib Member of the Moenkopi Formation from SW Nevada . o I o
os o0s

005 01 015 02 025 05 ol ols 02 025

text analysis (most genomics ...
ysist ? o8 --) parameter sweeps

Zaoplnkon Monuiy
Zooplankton Mortality

Independent samples

statistical model optimization
(MCMC, numerical methods, etc.)

multi-start simulations

multi-image and
multi-sample analysis

Signs of HTC-able work

Any mention of numerous samples, images, models, parameters, etc.

Nearly anything written by the primary user (e.g. c/fortran, Python, R)
— Break out of loops!
— Common internal parallelism could really be HTC (e.g. Matlab’s ‘parfor’,
‘distributed server’, etc.)

Some community softwares that use multi-threading or
multiprocessing (e.g. OpenMP)
— many are simply looping over data portions or independent tasks

— HTC-able: break up input (or ‘parameter’ space), turn off multi-threading, combine
results

Long-running jobs (especially if non-MPl); see above explanations

Real HTC Use Cases

OSG website ‘Spotlight’
https://osg-htc.org/spotlight.html

OSG All-Hands Meetings (research talks usually day 1)
https.//osg-htc.org/all-hands/

HTCondor Week Presentations (usually first or last day)
https://htcondor.org/past_condor_weeks.html

https://osg-htc.org/spotlight.html
https://osg-htc.org/all-hands/
https://htcondor.org/past_condor_weeks.html

Example Challenge

You need to process 72 brain images for each of 168
patients. Each image takes ~1 hour of compute time.

168 patients x 72 images = ~12000 tasks = ~12000 hrs

Conference is next week.

Distributed Computing

 Use many computers, each running one
iInstance of our program

 Example:
— 1 laptop (1 core) => 12,000 hrs = ~1.5 years
— 1 server (~40 cores) => 750 hrs = ~2 weeks

— 1 MPI job (400 cores) => 30 hrs = ~1 days
— A whole cluster (10,000 cores) =~1 hour

What computing resources are available?

A server?

A local cluster?

— Consider: Queue wait time? Can you program MP/MPI?
Typical clusters tuned for HPC (large MPI) jobs may not be
best for HTC workflows! Could you use even more than
that?

0SG?
Other

— EGI (European Grid Infrastructure)
— Other national and regional grids
— Commercial cloud systems (e.g. HTCondor on AWS)

What is the a consortium of researchers and institutions who share compute and
0SG? data resources for distributed high-throughput computing (dHTC)
in support of open science

OSG User School 2022

Who Participates?

Status Map @ Jobs CPUHours Transfers TB Transferred

[Re S e a rC h e rS View OS s (default) Site (None)
e Science Gateways BN

e Multi-Institution Collaborations

— Atlas/CMS (Higg Boson), IceCube,
South Pole Telescope, and others
e Academic Institutions and
National Laboratories
that support the above

Campuses are critical to Y T

OSG’s ability to advance research. s

em
j Map data ©2021 INEGI Imagery ©2021 NASA, TerraMetrics | Terms of Use

OSG User School 2022

Total Core Hours per Month

250 Mil total v

Research Communities —om orm
200 M (POOIS) in the OSG p == 0Sg 1:53Bil

. | ol — 46 Mil

(“virtual organizations”) ‘ l dosar 346 Mi

) o . == fermilab 334 Mil

150 Mil >2 billion hrs in the last year ~ glow 285 Mil

I = cdf 259 Mil

| == alice 190 Mil

l - ligo 136 Mil

50 Mil I == mu2e 94.4 Mil

I == gridunesp 80.1 Mil

i |||W"l| Toee Teew

o JR—— mnll"“""“l"l"l |||” = belle 74.8 Mil
2006 2008 2010 2012 2014 2016 2018 2020 2022

gracc.opensciencegrid.org

CERN Accelerating science Signin Directory

=5 =

HOW IS CMS
THE HIGGS B0

y

st ' ‘-‘

h ’}.',‘0
-

< Previous

G'Supportgi¥ulti-Messenger .
¢ Stronomy.

-
-

OSG integrates global'.computin_ tion of

L)

=
~

wtron stars by LIGO,
1RGO, and DECam.

Read more

250 Mil

Total Core Hours per Month

“Open Science Pool”

200 Mil

150 Mil

100 Mil

50 Mil

0 L .i...u||||||||II|II||||||||||“||"|“

2006 2008
gracc.opensciencegrid.org

2010

2012

campus access points

2014

2016

single researchers/groups (OSG Connect)
smaller multi-institution collaborations

"

oy ’HW’U””I

2018

2020

i

2022

cms

fermilab
glow

cdf

dzero
alice

ligo

mu2e
gridunesp
nova

belle

total v
6.61 Bil

5.54 Bil

46 Mil
334 Mil
283 Mil
259 Mil
225 Mil
190 Mil
136 Mil

94.4 Mil
80.1 Mil
76.6 Mil
74.8 Mil

OSG

~,

Can the O5SPool Help?

Ideal Jobs! Still very Maybe not, but get
advantageous in touch!
Expected Throughput, 1000s concurrent cores 100s concurrent Let's discuss!
per user cores
CPU 1 per job < 8 per job > 8 per job
Walltime <10 hrs* < 20 hrs* > 20 hrs
RAM < few GB <40GB > 40 GB
Input <500 MB <10 GB > 10 GB**
Output <1GB <10 GB > 10 GB**
Software pre-compiled binaries, Most other than > Licensed Software,
containers non-Linux

*or checkpointable

** per job; you can work with a large dataset on OSG if it can be split into pieces

23

Hypothetical Throughput, 12k core hours

600
500
400
300
200

100
@
@
0@

0

OSG User School 2022

Concurrent Cores over Time (Days)

0.5

®
®
® Local HPC, whole-
node (40c) Jobs
Local HTC, single-
core
15 2

24

/;\\

“—— Hypothetical Throughput, 12k core hours

OSG
Concurrent Cores over Time (Days)

6000

5000 —@

4000 -®-0SPool, single-
core

3000 -®-Local HPC, whole-

5000 node (40c) Jobs
Local HTC, single-

1000 core

0 & ® —————— O —
0 0.5 1 15

OSG User School 2022

25

= For Researchers and Campuses

Proactive, personalized facilitation and support for:
e Individual researchers via OSG Connect

e |nstitutions and large collaborations
— Share local resources via the OSG

— Locally-supported access points
» data and identity federation
» integration of cloud capacity
— Local HTC Capacity
= Learn from OSG’s Research Computing Facilitators

 Presentations/Training in OSG compute execution,
HTC Facilitation, and local HTC systems administration

OSG User School 2022

Example Local Cluster

e UW-Madison’s Center for
High Throughput

Computing (CHTC) CHTC Pool

e Recent CPU hours: single-core
high-memory

~120 million hrs/year (~15k cores)
Up to 15,000hrs per user, per day multi-core

(~600 cores in use) o GPUs MPI

access
point

OSG User School 2022

Intro to Job Submission
with HTCondor

Overview

How does the HTCondor job scheduler work?
How do you run, monitor, and review jobs?

Best ways to submit multiple jobs (what we're here
for, right?)
Testing, tuning, and troubleshooting to scale up.

HTCondor History and Status

e History

— Started in 1988 as a “cycle scavenger” mOnM

 Today
— Developed within the CHTC by professional developers
— Used all over the world, by:
= campuses, national labs, Einstein/Folding@Home

» Dreamworks, Boeing, SpaceX, investment firms, ...
» The OSG!!

e Miron Livny

— Professor, UW-Madison Computer Sciences '
— CHTC Director, OSG Technical Director

e Submit tasks to a queue (on a access point)

e HTCondor schedules them to run on
computers (execute points)

(jv execute v’

—>

access po\lrﬂ% /

OSG User School 2022 31

Terminology: Job

Job: An independently-scheduled unit of computing
work

Three main pieces:
Executable: the script or program to run
Input: any options (arguments) and/or file-based information
Output: files printed by the executable

In order to run many jobs, executable must run on the
command-line without any graphical input from the user

<= Terminology: Machine, Slot

e Machine

— A whole computer (desktop or server) Q

— Has multiple processors (CPU cores), some amount o‘f‘memory,
and some amount of file space (disk)

o Slot
— an assignable unit of a machine (i.e. 1 job per slot)
— may correspond to one core with some memory and disk
— a typical machine will have multiple slots

« HTCondor can break up and create new slots, dynamically, as
resources become available from completed jobs

OSG User School 2022 33

Job Matching

 On aregular basis, the central manager reviews
Job and Machine attributes and matches jobs to Slots.

HTCond%r

execute
point

execute 34
\ﬂ poiny“
execute 34

point

access point

central manager

Job Execution

 Then the access and execute points
communicate directly.

HTCond%r

execute
point

execute 34
> point
execute 34

point

access p?'@é

AN S / - 4

Single Computer

OSG User School 2022

e
I—

slot4

slota

queue +

slot

| HIConASr

36

BASIC JOB SUBMISSION

=

o o

% Job Example

e program called “compare_states” (executable), which
compares two data files (input) and produces a single
output file.

$ compare states wi.dat us.dat wi.dat.out

OSG User School 2022

38

Basic Submit File

executable = compare states
arguments = wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat
log = job.log

output = job.out

error = job.err

request cpus = 1

request disk = 20MB

request memory = 20MB

queue 1

Basic Submit File

e Listyour executable

executable = compare_states

arguments = wi.dat us.dat wi.dat.out and any arguments |t
transfer input files = us.dat, wi.dat takes
log = job.log
output = job.out
error = job.err e Arguments are any
_ options passed to the
request cpus = 1
request_disk = 20MB executable from the

request memory = 20MB

command line

queue 1

$ compare_states wi.dat us.dat wi.dat.out

Basic Submit File

e comma-separated list of

X table = tat . -
o I input files to transfer
to the slot

transfer_ input_files = us.dat, wi.dat

log = job.log
output = _ job.out wi.dat
error = Jjob.err

request cpus = 1
request disk = 20MB
request memory = 20MB us.dat

queue 1

Basic Submit File

executable = compare states
arguments = wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat
log = job.log

output = job.out

error = job.err

request cpus = 1

request disk = 20MB

request memory = 20MB

queue 1

OSG User School 2022

HTCondor will transfer
back all new and
changed files (output)
from the job,
automatically.

42

Basic Submit File

* log: file created by

executable = compare states HTCondor to track jOb

arguments = wi.dat us.dat wi.dat.out

transfer input files

log = job.log
output = job.out
error = job.err

request cpus = 1
request disk = 20MB

request _memory = 20MB

queue 1

progress
— Explored in exercises!

us.dat, wi.dat

e output/error:

captures stdout and stderr
from your program (what
would otherwise be printed
to the terminal)

Basic Submit File

e request the resources

your job needs.

— More on this later!

| e queue: final keyword
log = job.log . . . “ . ”
output = job.out indicating “create 1 job
error = job.err .
according to the above

executable = compare states
arguments = wi.dat us.dat wi.dat.out

transfer input files = us.dat, wi.dat

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

SUBMITTING AND
MONITORING

Submitting and Monitoring

e To submit a job/jobs: condor submit submit file
e To monitor submitted jobs: condor g

$
Submitting job(s).
1 job(s) submitted to cluster 128.

$

-- Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/22 10:35:54

OWNER BATCH NAME SUBMITTED DONE 1INV IDLE TOTAL JOB_ IDS
alice CMD: compare_states 5/9 11:05 _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor submit
HTCondor Manual: condor g

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

More about condor q

e By default, condor_ g shows your jobs only and batches
jobs that were submitted together:

$
—— Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/22 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS

alice CMD: compare_states 5/9 11:05 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId =ClusterID.ProclID

e Limit condor g by username, ClusterId or full
JobId, (denoted [U/C/J] in following slides).

More about condor q

e To see individual job details, use:
condor_q —nobatch

$

-- Schedd: learn.chtc.wisc.edu : <128.104.101.92>

ID OWNER SUBMITTED RUN TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I O 0.0 compare states

128.1 alice 5/9 11:09 0+00:00:00 I O 0.0 compare states

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

e We will use the —-nobatch option in the following slides
to see extra detail about what is happening with a job

Job ldle

$ condor_gq -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>

ID OWNER SUBMITTED RUN_TIME PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00: 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removef running, 0 held, 0 suspended

Access Point

(submit dir)/
job.submit
compare_ states
wi.dat
us.dat
job.log
job.out
job.err

Job Starts

$ condor_q -nobatch

-— Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618>

ID OWNER SUBMITTED RUN_TIME I SIZE CMD

128.0 alice 5/9 11:09 0+00:00:0 0.0 compare states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Access Point Execute Point

(submit dir)/ > (execute dir)/
job.submit compare_states
compare states wi.dat
wi.dat us.dat
us.dat
job.log
job.out
job.err

Job Running

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>

ID OWNER SUBMITTED RUN_TIME J#gPRI SIZE CMD
128.0 alice 5/9 11:09 0+00:01:0@ 0 0.0 compare states wi.dat us.dat
1 jobs; 0 completed, 0 removed, 0 idle p held, 0 suspended
Access Point Execute Point
(submit dir)/ (execute dir)/
job.submit compare states
compare_ states wi.dat
wi.dat us.dat
us.dat stderr
job.log stdout
job.out wi.dat.out
job.err subdir/tmp.dat

Job Completes

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
1D OWNER SUBMITTED RUN_TIME@RI SIZE CMD

128 alice 5/9 11:09 0+00:02:0 0 0.0 compare_ states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

Access Point Execute Point
(submit dir)/ (execute dir)/

job.submit compare states
compare_states stderr wi.dat

wi.dat stdout us.dat

us.dat wi.dat.out stderr

job.log E stdout

job.out wi.dat.out
job.err subdir/tmp.dat

Job Completes (cont.)

$ condor_gq -nobatch

—— Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?2...
ID OWNER SUBMITTED RUN_ TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

Access Point

(submit dir)/
job.submit
compare_ states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

Reviewing Jobs

e To review a large group of jobs at once, use
condor history
As condor_q is to the present, condor_ history is to the past

SUBMITTED

5/11
5/11
5/11
5/11

5/11
5/11
5/11
5/11
5/11
5/11
5/11

09:
09:
09:
09:
09:
09:
09:
09:
09:
09:
09:

52
52
52
52
52
52
52
52
52
52
52

RUN_ TIME
0+00:
0+00:
0+00:
0+00:
0+00:
0+00:
0+00:
0+00:
0+00:
0+00:
0+00:

07:
08:
03:
11:
26:
27:
05:
07:
09:
09:
13:

QOO0 a0an

H

COMPLETED

5/11
5/11
5/11
5/11
5/11
5/11
5/11
5/11
5/11
5/11
5/11

16:
16:
16:
16:
16:
16:
15:
15:
15:
15:
15:

00
00
00
00
00
00
59
59
59
59
59

CMD
/home/alice
/home/alice
/home/alice
/home/alice
/home/alice
/home/alice
/home/alice
/home/alice
/home/alice
/home/alice
/home/alice

HTCondor Manual: condor history

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html

Log File

000
001

006

005

(128.000.000) 05/09 11:09:08 Job submitted from host: <128.104.101.92&sock=6423 b881 3>

(128.000.000) 05/09 11:10:46 Job executing on host: <128.104.101.128:9618&sock=5053 3126 3>

(128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

(128.000.000) 05/09 11:12:48 Job terminated.
(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00
Usr 0 00:00:00, Sys 0 00:00:00
Usr 0 00:00:00, Sys 0 00:00:00
0

Run Remote Usage
- Run Local Usage
Total Remote Usage

Usr 0 00:00:00, Sys 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus e 1 1

Disk (KB) : 14 20480 17203728

Memory (MB) 1

20 20

=

> —

o Resource Requests

e Jobs are nearly always using a portion of a
machine, and not the whole thing

 Very important to request appropriate resources
(memory, cpus, disk)

— requesting too little: causes problems for your and
other jobs; jobs might by ‘held’ by HTCondor

— requesting too much: jobs will match to fewer “slots”
than they could, and you'll block other jobs

OSG User School 2022

>

OSG

~,

Ideal OS5FP ool Job Sizes

Ideal Jobs! Still very Maybe not, but get
advantageous in touch!
Expected Throughput, 1000s concurrent cores 100s concurrent Let's discuss!
per user cores
CPU 1 per job < 8 per job > 8 per job
Walltime <10 hrs* < 20 hrs* > 20 hrs
RAM < few GB <40GB > 40 GB
Input <500 MB <10 GB > 10 GB**
Output <1GB <10 GB > 10 GB**
Software pre-compiled binaries, = Most other than > Licensed Software,
containers non-Linux

*or checkpointable

** per job; you can work with a large dataset on OSG if it can be split into pieces

o7

OSG User School 2022

CHTC Pool

single-core
high-memory

multi-core

seus MPI

submit
server

Thoughts on Exercises

Copy-and-paste is quick, but you WILL learn more by
typing out commands and submit file contents

Ask Questions during Work Time!

Exercises in THIS unit are important to complete in
order, before moving on! (You can save “bonus”
exercises for later.)

(See 1.6 if you need to remove jobs!)

