
Intro to HTC and HTCondor

Monday, July 25
Lauren Michael

This work was supported by NSF grants MPS-1148698, OAC-1836650, and OAC-2030508

OSG User School 2022

Intro to HTC and OSG

2

OSG User School 2022

Overview

• What is high throughput computing (HTC) ?
• What is the OSG?
• How do you get the most out of the above?

3

OSG User School 2022

HTC: An Analogy

4

OSG User School 2022

HTC: An Analogy

5

OSG User School 2022

Serial Computing

• Serial execution, running one task at a time
• Overall compute time grows significantly as

individual tasks get more complicated (long)
or if the number of tasks increases

• How can you speed things up?

tim
e

What many
programs look like:

6

OSG User School 2022

High Throughput Computing (HTC)

• Parallelize!
• Independent tasks run on different cores

tim
e

n cores

7

OSG User School 2022

High Performance Computing (HPC)

• Benefits greatly from:
- CPU speed + homogeneity
- shared filesystems
- fast, expensive networking (e.g.

Infiniband) and co-located servers
• Requires special programming (MP/MPI)
• Scheduling: Must wait until all

processors are available, at the same
time and for the full duration

• What happens if one core or server
fails or runs slower than the others?

8

tim
e

n cores

…
…

…

OSG User School 2022

High Throughput Computing (HTC)

• Scheduling: only need 1 CPU core for each (shorter wait)
• Easier recovery from failure
• No special programming required
• Number of concurrently running jobs is more important
• CPU speed and homogeneity are less important

9

tim
e
n cores

OSG User School 2022

Example Local Cluster
• UW-Madison’s Center for

High Throughput
Computing (CHTC)

• Recent CPU hours:
~120 million hrs/year (~15k cores)
Up to 15,000 per user, per day

(~600 cores in use)

10

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
access
point

OSG User School 2022

HTC Examples

11

text analysis (most genomics …) parameter sweeps

statistical model optimization
(MCMC, numerical methods, etc.)

multi-start simulations

multi-image and
multi-sample analysis

OSG User School 2022

Signs of HTC-able work

• Any mention of numerous samples, images, models, parameters, etc.
• Nearly anything written by the primary user (e.g. c/fortran, Python, R)

- Break out of loops!
- Common internal parallelism could really be HTC (e.g. Matlab’s ‘parfor’,

‘distributed server’, etc.)
• Some community softwares that use multi-threading or

multiprocessing (e.g. OpenMP)
- many are simply looping over data portions or independent tasks
- HTC-able: break up input (or ‘parameter’ space), turn off multi-threading, combine

results
• Long-running jobs (especially if non-MPI); see above explanations

12

OSG User School 2022

Real HTC Use Cases
OSG website ‘Spotlight’
https://osg-htc.org/spotlight.html

OSG All-Hands Meetings (research talks usually day 1)
https://osg-htc.org/all-hands/

HTCondor Week Presentations (usually first or last day)
https://htcondor.org/past_condor_weeks.html

13

https://osg-htc.org/spotlight.html
https://osg-htc.org/all-hands/
https://htcondor.org/past_condor_weeks.html

OSG User School 2022

Example Challenge

You need to process 72 brain images for each of 168
patients. Each image takes ~1 hour of compute time.

168 patients x 72 images = ~12000 tasks = ~12000 hrs

Conference is next week.
14

OSG User School 2022

Distributed Computing

• Use many computers, each running one
instance of our program

• Example:
- 1 laptop (1 core) => 12,000 hrs = ~1.5 years
- 1 server (~40 cores) => 750 hrs = ~2 weeks
- 1 MPI job (400 cores) => 30 hrs = ~1 days
- A whole cluster (10,000 cores) = ~1 hour

15

OSG User School 2022

What computing resources are available?

• A server?
• A local cluster?

- Consider: Queue wait time? Can you program MP/MPI?
Typical clusters tuned for HPC (large MPI) jobs may not be
best for HTC workflows! Could you use even more than
that?

• OSG?
• Other

- EGI (European Grid Infrastructure)
- Other national and regional grids
- Commercial cloud systems (e.g. HTCondor on AWS)

16

OSG User School 2022

What is the
OSG?

a consortium of researchers and institutions who share compute and
data resources for distributed high-throughput computing (dHTC)
in support of open science

OSG User School 2022

• Researchers
• Science Gateways
• Multi-Institution Collaborations

- Atlas/CMS (Higg Boson), IceCube,
South Pole Telescope, and others

• Academic Institutions and
National Laboratories
that support the above

Campuses are critical to
OSG’s ability to advance research.

Who Participates?

OSG User School 2022

Research Communities
(Pools) in the OSG

(“virtual organizations”)

>2 billion hrs in the last year

gracc.opensciencegrid.org

OSG User School 2022

OSG User School 2022

OSG User School 2022gracc.opensciencegrid.org

“Open Science Pool”
• single researchers/groups (OSG Connect)
• smaller multi-institution collaborations
• campus access points

OSG User School 2022

Can the OSPool Help?

23

OSG User School 2022

Hypothetical Throughput, 12k core hours

24

OSG User School 2022

Hypothetical Throughput, 12k core hours

25

OSG User School 2022

Proactive, personalized facilitation and support for:
• Individual researchers via OSG Connect
• Institutions and large collaborations

- Share local resources via the OSG
- Locally-supported access points

§ data and identity federation
§ integration of cloud capacity

- Local HTC Capacity
§ Learn from OSG’s Research Computing Facilitators

• Presentations/Training in OSG compute execution,
HTC Facilitation, and local HTC systems administration

For Researchers and Campuses

OSG User School 2022

Example Local Cluster
• UW-Madison’s Center for

High Throughput
Computing (CHTC)

• Recent CPU hours:
~120 million hrs/year (~15k cores)
Up to 15,000hrs per user, per day

(~600 cores in use)

27

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
access
point

OSG User School 2022

Intro to Job Submission
with HTCondor

28

OSG User School 2022

Overview

• How does the HTCondor job scheduler work?
• How do you run, monitor, and review jobs?
• Best ways to submit multiple jobs (what we’re here

for, right?)
• Testing, tuning, and troubleshooting to scale up.

29

OSG User School 2022

HTCondor History and Status
• History

- Started in 1988 as a “cycle scavenger”

• Today
- Developed within the CHTC by professional developers
- Used all over the world, by:

§ campuses, national labs, Einstein/Folding@Home
§ Dreamworks, Boeing, SpaceX, investment firms, …
§ The OSG!!

• Miron Livny
- Professor, UW-Madison Computer Sciences
- CHTC Director, OSG Technical Director

30

OSG User School 2022

HTCondor -- How It Works
• Submit tasks to a queue (on a access point)
• HTCondor schedules them to run on

computers (execute points)

access point
execute

point

execute
point

execute
point

31

OSG User School 2022

Terminology: Job
• Job: An independently-scheduled unit of computing

work
• Three main pieces:

Executable: the script or program to run
Input: any options (arguments) and/or file-based information
Output: files printed by the executable

• In order to run many jobs, executable must run on the
command-line without any graphical input from the user

32

OSG User School 2022

Terminology: Machine, Slot
• Machine

- A whole computer (desktop or server)
- Has multiple processors (CPU cores), some amount of memory,

and some amount of file space (disk)

• Slot
- an assignable unit of a machine (i.e. 1 job per slot)
- may correspond to one core with some memory and disk
- a typical machine will have multiple slots

• HTCondor can break up and create new slots, dynamically, as
resources become available from completed jobs

33

OSG User School 2022

Job Matching
• On a regular basis, the central manager reviews

Job and Machine attributes and matches jobs to Slots.

access point
execute

point

execute
point

execute
point

central manager

34

OSG User School 2022

Job Execution
• Then the access and execute points

communicate directly.

access point

execute
point

execute
point

execute
point

central manager

35

OSG User School 2022

Single Computer

queue +
central manager

slot

slot

slot

36

OSG User School 2022

BASIC JOB SUBMISSION

37

OSG User School 2022

Job Example
• program called “compare_states” (executable), which

compares two data files (input) and produces a single
output file.

38

wi.dat

compare_
states

us.dat

wi.dat.out

$ compare_states wi.dat us.dat wi.dat.out

OSG User School 2022

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File

39

OSG User School 2022

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• List your executable

and any arguments it
takes

• Arguments are any
options passed to the
executable from the
command line

$ compare_states wi.dat us.dat wi.dat.out
40

OSG User School 2022

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

Basic Submit File
• comma-separated list of

input files to transfer
to the slot

wi.dat

us.dat

41

OSG User School 2022

Basic Submit File
• HTCondor will transfer

back all new and
changed files (output)
from the job,
automatically.

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

wi.dat.out

42

OSG User School 2022

Basic Submit File
• log: file created by

HTCondor to track job
progress
- Explored in exercises!

• output/error:
captures stdout and stderr
from your program (what
would otherwise be printed
to the terminal)

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

43

OSG User School 2022

Basic Submit File
• request the resources

your job needs.
- More on this later!

• queue: final keyword
indicating “create 1 job”
according to the above

executable = compare_states
arguments = wi.dat us.dat wi.dat.out

transfer_input_files = us.dat, wi.dat

log = job.log
output = job.out
error = job.err

request_cpus = 1
request_disk = 20MB
request_memory = 20MB

queue 1

44

OSG User School 2022

SUBMITTING AND
MONITORING

45

OSG User School 2022

Submitting and Monitoring
• To submit a job/jobs: condor_submit submit_file

• To monitor submitted jobs: condor_q

$ condor_submit job.submit
Submitting job(s).
1 job(s) submitted to cluster 128.

$ condor_q
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/22 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

HTCondor Manual: condor_submit
HTCondor Manual: condor_q 46

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_submit.html
http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_q.html

OSG User School 2022

More about condor_q
• By default, condor_q shows your jobs only and batches

jobs that were submitted together:

• Limit condor_q by username, ClusterId or full
JobId, (denoted [U/C/J] in following slides).

$ condor_q
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92> @ 05/01/22 10:35:54
OWNER BATCH_NAME SUBMITTED DONE RUN IDLE TOTAL JOB_IDS
alice CMD: compare_states 5/9 11:05 _ _ 1 1 128.0

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

JobId = ClusterID.ProcID

47

OSG User School 2022

More about condor_q
• To see individual job details, use:
condor_q –nobatch

• We will use the -nobatch option in the following slides
to see extra detail about what is happening with a job

$ condor_q -nobatch
-- Schedd: learn.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states
128.1 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states
...

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

48

OSG User School 2022

Job Idle

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 I 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 1 idle, 0 running, 0 held, 0 suspended

49

Access Point

OSG User School 2022

Job Starts

compare_states
wi.dat
us.dat

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:00:00 < 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

(execute_dir)/

50

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

(execute_dir)/

Access Point Execute Point

OSG User School 2022

Job Running
$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128.0 alice 5/9 11:09 0+00:01:08 R 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

51

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out
subdir/tmp.dat

Access Point Execute Point

OSG User School 2022

Job Completes

stderr
stdout

wi.dat.out

$ condor_q -nobatch
-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92>
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

128 alice 5/9 11:09 0+00:02:02 > 0 0.0 compare_states wi.dat us.dat

1 jobs; 0 completed, 0 removed, 0 idle, 1 running, 0 held, 0 suspended

52

(execute_dir)/
compare_states
wi.dat
us.dat
stderr
stdout
wi.dat.out
subdir/tmp.dat

Access Point Execute Point
(submit_dir)/

job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err

OSG User School 2022

Job Completes (cont.)
$ condor_q -nobatch

-- Schedd: submit-5.chtc.wisc.edu : <128.104.101.92:9618?...
ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

53

(submit_dir)/
job.submit
compare_states
wi.dat
us.dat
job.log
job.out
job.err
wi.dat.out

Access Point

OSG User School 2022

Reviewing Jobs
• To review a large group of jobs at once, use
condor_history

As condor_q is to the present, condor_history is to the past

$ condor_history alice
ID OWNER SUBMITTED RUN_TIME ST COMPLETED CMD

189.1012 alice 5/11 09:52 0+00:07:37 C 5/11 16:00 /home/alice
189.1002 alice 5/11 09:52 0+00:08:03 C 5/11 16:00 /home/alice
189.1081 alice 5/11 09:52 0+00:03:16 C 5/11 16:00 /home/alice
189.944 alice 5/11 09:52 0+00:11:15 C 5/11 16:00 /home/alice
189.659 alice 5/11 09:52 0+00:26:56 C 5/11 16:00 /home/alice
189.653 alice 5/11 09:52 0+00:27:07 C 5/11 16:00 /home/alice
189.1040 alice 5/11 09:52 0+00:05:15 C 5/11 15:59 /home/alice
189.1003 alice 5/11 09:52 0+00:07:38 C 5/11 15:59 /home/alice
189.962 alice 5/11 09:52 0+00:09:36 C 5/11 15:59 /home/alice
189.961 alice 5/11 09:52 0+00:09:43 C 5/11 15:59 /home/alice
189.898 alice 5/11 09:52 0+00:13:47 C 5/11 15:59 /home/alice

HTCondor Manual: condor_history

http://research.cs.wisc.edu/htcondor/manual/v8.5/condor_history.html

OSG User School 2022

Log File
000 (128.000.000) 05/09 11:09:08 Job submitted from host: <128.104.101.92&sock=6423_b881_3>
...
001 (128.000.000) 05/09 11:10:46 Job executing on host: <128.104.101.128:9618&sock=5053_3126_3>
...
006 (128.000.000) 05/09 11:10:54 Image size of job updated: 220

1 - MemoryUsage of job (MB)
220 - ResidentSetSize of job (KB)

...
005 (128.000.000) 05/09 11:12:48 Job terminated.

(1) Normal termination (return value 0)
Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Remote Usage
Usr 0 00:00:00, Sys 0 00:00:00 - Total Local Usage

0 - Run Bytes Sent By Job
33 - Run Bytes Received By Job
0 - Total Bytes Sent By Job
33 - Total Bytes Received By Job
Partitionable Resources : Usage Request Allocated

Cpus : 1 1
Disk (KB) : 14 20480 17203728
Memory (MB) : 1 20 20

55

OSG User School 2022

whole
computer

your request

Resource Requests
• Jobs are nearly always using a portion of a

machine, and not the whole thing
• Very important to request appropriate resources

(memory, cpus, disk)
- requesting too little: causes problems for your and

other jobs; jobs might by ‘held’ by HTCondor
- requesting too much: jobs will match to fewer “slots”

than they could, and you’ll block other jobs

56

OSG User School 2022

Ideal OSPool Job Sizes

57

OSG User School 2022

YOUR TURN!

58

CHTC Pool
single-core

multi-core

high-memory

GPUs MPI
submit
server

OSG User School 2022

Thoughts on Exercises
• Copy-and-paste is quick, but you WILL learn more by

typing out commands and submit file contents
• Ask Questions during Work Time!
• Exercises in THIS unit are important to complete in

order, before moving on! (You can save “bonus”
exercises for later.)

• (See 1.6 if you need to remove jobs!)

59

